精英家教网 > 高中数学 > 题目详情
20.给出下列四个命题:
①若平面α∥β,直线a?α,直线b?β,则a∥b      
②若直线a∥b,a∥α,则b∥α
③若平面α∥β,直线a?α,则a∥β         
④若直线a∥α,a∥β,则α∥β
其中正确命题有(  )
A.1个B.2个C.3个D.4个

分析 ①由题意可得:a∥b 或为异面直线,即可判断出正误;
②由已知可得:b∥α或b?α,即可判断出正误;
③利用线面平行的性质定理即可判断出正误;
④由题意可得α∥β或相交,即可判断出正误.

解答 解:①若平面α∥β,直线a?α,直线b?β,则a∥b 或为异面直线,因此不正确;
②若直线a∥b,a∥α,则b∥α或b?α,因此不正确;
③若平面α∥β,直线a?α,则a∥β,利用线面平行的性质定理可知正确;
④若直线a∥α,a∥β,则α∥β或相交,因此不正确.
其中正确命题有1个.
故选:A.

点评 本题考查了空间位置关系及其判定方法,考查了空间想象能力与推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在等比数列{an}中,下列各式中成立的是(  )
A.a8=a2a4B.a6=a2+a4C.${a_4}^2={a_2}{a_6}$D.${a_8}^2={a_2}{a_6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“a=-3”是“函数y=x2+2(a-1)x+2在区间(-∞,4]上单调递减”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算:
(1)$\sqrt{(π-4)^{2}}$+π;
(2)${27^{\frac{2}{3}}}+{(\frac{1}{2})^{-3}}$
(3)已知3a=2,用a表示log34-log36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.2010年上海世博会某国要建一座八边形的展馆区,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的面积为200m2的十字型地域,计划在正方形MNPQ上建一座“观景花坛”,造价为4200元/m2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m2,再在四个空角(如△DQH等)上铺草坪,造价为80元/m2.设AD长为xm,DQ长为ym.
(1)试找出x与y满足的等量关系式;
(2)设总造价为S元,试建立S与x的函数关系;
(3)若总造价S不超过138000元,求AD长x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.三个数a,b,c成等比数列,且a+b+c=3,则b的取值范围是[-3,0)∪(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=xlnx.
(I)记函数g(x)=$\frac{a{x}^{2}}{2}$,若?x0∈[1,e]使f(x0)<g(x0)成立,求实数a的取值范围;
(Ⅱ)记函数h(x)=(k-3)x-k+2,若x>1时f(x)>h(x)恒成立,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求值:
(1)${0.027^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{256^{\frac{3}{4}}}-{3^{-1}}$+1
(2)log43•log92+log2$\root{4}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.
网购金额
(单位:元)
频数频率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.30
(2500,3000]yq
合计1001.00
(Ⅰ)确定x,y,p,q的值,并补全频率分布直方图;
(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.
①请将列联表补充完整;
网龄3年以上网龄不足3年合计
购物金额在2000元以上35
购物金额在2000元以下20
合计100
②并据此列联表判断,能否在犯错误的概率不超过0.01的前提下,认为网购金额超过2000元与网龄在三年以上有关?
参考数据:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:${{K}^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案