精英家教网 > 高中数学 > 题目详情
8.在平面区域{(x,y)||x|≤2,|y|≤2}上恒有ax+3by≤4,则动点P(a,b)所形成的平面区域的面积是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.$\frac{8}{3}$

分析 欲求平面区域的面积,先要确定关于a,b的约束条件,根据恒有ax+3by≤4成立,a≥0,b≥0,确定出ax+3by的最值取到的位置从而确定关于a,b约束条件.

解答 解:平面区域{(x,y)||x|≤2,|y|≤2},如图:
当a≥0,b≥0
t=ax+3by最大值在区域的右上取得,即一定在点(2,2)取得,∴2a+6b≤4,
作出:$\left\{\begin{array}{l}{a≥0}\\{b≥0}\\{a+3b≤2}\end{array}\right.$的可行域如图蓝色的三角形的区域,
∴以a,b为坐标点P(a,b)所形成的平面区域是一个三角形,
面积为:$\frac{1}{2}×\frac{2}{3}×2$=$\frac{2}{3}$.
由a≤0,b≥0;a≤0,b≤0;a≥0,b≤0;三种情况可知可行域类似a≥0,b≥0的情况,分别为红色三角形区域;黑色三角形区域;黄色三角形区域;
以a,b为坐标点P(a,b)所形成的平面区域的面积是:4×$\frac{2}{3}$=$\frac{8}{3}$
故选:D.

点评 本题主要考查线性规划的相关知识.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.某滨海城市计划沿一条滨海大道修建7个海边主题公园,由于资金的原因,打算减少2个海边主题公园,两端海边主题公园不在调整计划之列,相邻的两个海边主题公园不能在同时调整,则调整方案的种数是(  )
A.12B.8C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数a-$\frac{17}{4-i}$(a∈R,i是虚数单位)是纯虚数,则实数a的值为(  )
A.-4B.-1C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下列三个命题:
①“若x2+2x-3≠0,则x≠1”为假命题;
②若p∧q为假命题,则p,q均为假命题;
③命题p:?x∈R,2x>0,则?p:?x0∈R,2x0≤0.
其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在平面直角坐标系xOy中,双曲线M:$\frac{{x}^{2}}{m}$-y2=1与圆N:x2+(y-m)2=1相切,A(-$\sqrt{m+1}$,0),B($\sqrt{m+1}$,0),若圆N上存在一点P满足|PA|-|PB|=2$\sqrt{m}$,则点P到x轴的距离为(  )
A.m3B.m2C.mD.$\frac{1}{m}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC中,A=30°,AB=2$\sqrt{3}$,2≤BC≤2$\sqrt{3}$,则△ABC面积的范围是$(0,\sqrt{3}]∪[2\sqrt{3},3\sqrt{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设复数z=$\frac{2}{1+i}$+(1-i)2,则z的模为(  )
A.$\sqrt{10}$B.$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={x|x2≥x},N={y|y=3x+1,x∈R},则M∩N=(  )
A.{x|x>1}B.{x|x≥1}C.{x|x≤0或x>1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解方程:
(1)3×|2x-1|-1=5;(2)|x-|2x+1||=3;(3)|x-2|+|x+5|=6;
(4)|x-5|+$\sqrt{(4-x)^{2}}$=1;(5)x|x|-3|x|+2=0.

查看答案和解析>>

同步练习册答案