精英家教网 > 高中数学 > 题目详情
已知x=
1
2
(5
1
n
-5-
1
n
),n∈N*,求(x+
1+x2
)n的值
考点:二项式系数的性质
专题:计算题,函数的性质及应用
分析:将x的值,代入化简,即可得出结论.
解答: 解:由题意,所求式子为(
5
1
n
-5-
1
n
2
+
5
1
n
+5-
1
n
2
)n
=(5
1
n
)n
=5.
点评:本题考查代数式的计算,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sin2
π
4
+x)-
3
cos2x-1,x∈R
(1)求f(x)的最值和最小正周期;
(2)若h(x)=f(x+t)的图象关于点(-
π
6
,0)对称,且t∈(0,π),求t的值;
(3)设p:x∈[
π
4
π
2
],q:|f(x)-m|<3,若p是q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0的两侧,且a>0且a≠1,b>0,则
b
a-1
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则其外接球的表面积是(  )
A、25π
B、50π
C、
125
2
3
π
D、
50
2
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某圆台的上、下底面半径分别为2和8,且该圆台的母线长为10,则圆台的体积为(  )
A、223πB、224π
C、168πD、169π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=
3
sin(ωx)-2sin2
ωx
2
+m
的最小正周期为3π(ω>0),且当x∈[0,π]时,函数f(x)的最小值为0,
(1)求函数f(x)的表达式;
(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

y=x2+3x+5,x∈[-2 4],求y的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一次函数y=
3
2
x+m和y=-
1
2
x+n的图象都经过点A[-2,3],且与y轴分别交于点B、C,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:
API[0,50](50,100](100,150](150,200](200,250](250,300]>300
空气质量轻微污染轻度污染中度污染中度重污染重度污染
天数413183091115
(1)若某企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为ω)的关系式为:
S=
0,0≤ω≤100
4ω-400,100<ω≤300
2000,ω>300
,试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;
(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
附:
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828
k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

非重度污染重度污染合计
供暖季
 
 
 
非供暖季
 
 
 
合计
 
 
100

查看答案和解析>>

同步练习册答案