精英家教网 > 高中数学 > 题目详情
5.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(0)+f($\frac{11π}{12}$)的值为(  )
A.2$-\sqrt{3}$B.$-2-\sqrt{3}$C.1$-\frac{\sqrt{3}}{2}$D.$-1-\frac{\sqrt{3}}{2}$

分析 由题意和图象可得A值,由周期性可得ω,代点($\frac{π}{6}$,0)可得φ值,可得函数解析式,代值计算可求f(0)+f($\frac{11π}{12}$)的值.

解答 解:由已知得到A=2,$\frac{T}{4}=\frac{π}{6}-(-\frac{π}{12})$,所以T=π,所以ω=2,
又f($\frac{π}{6}$)=0,所以sin(2×$\frac{π}{6}$+φ)=0,|φ|<$\frac{π}{2}$),解得φ=-$\frac{π}{3}$,
所以f(x)=2sin(2x-$\frac{π}{3}$),
所以f(0)+f($\frac{11π}{12}$)=2sin(-$\frac{π}{3}$)+2sin(2×$\frac{11π}{12}-\frac{π}{3}$)=-$\sqrt{3}$-2;
故选B.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的图象的对称性涉及函数值的求解,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知非零向量$\overrightarrow{{e}_{1}}$和$\overrightarrow{{e}_{2}}$不共线.
(1)如果$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=3($\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$),求证:A,B,D三点共线;
(2)欲使向量K$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$与$\frac{1}{4}$$\overrightarrow{{e}_{1}}$+K$\overrightarrow{{e}_{2}}$平行,试确定实数K的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆C:(x-3)2+(y-2)2=5,一束入射光线从点A(-1,1)出发经直线x+y+2=0反射后与圆C相交于点P,求入射光线从点A到点P的最短路程为(  )
A.$\sqrt{5}$B.$2\sqrt{5}$C.$3\sqrt{5}$D.$4\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.方程9x-4•3x+3=0的解为x=1,x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某单位为了预测本单位用电量y度气温x℃之间的关系,经过调查收集某4天的数据,得到了回归方程形如$\widehat{y}$=-2x+$\widehat{a}$,且其中的$\overline{x}$=10,$\overrightarrow{y}$=40,预测当地气温为5℃时,该单位的用电量的度数为50.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.随机变量ξ服从二项分布ξ~B(n,p),且E(ξ)=60,D(ξ)=15,则p=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个盒子中装有5个红球和4个黑球(球的形状大小完全相同),从中随机取出4个小球,则4个小球中至少有3个黑球的概率是(  )
A.$\frac{5}{126}$B.$\frac{5}{14}$C.$\frac{10}{63}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列有关回归分析的论断:
①相关系数r是衡量两个变量之间线性关系强弱的量,|r|越接近1,这两个变量线性相关关系越弱,|r|越接近0,线性相关关系越强;
②随机误差e的均值为0,它的方差σ2越小,预报真实值的精度越高;
③残差图的带状区域的宽度越窄,模型拟合的精度越髙,回归方程的预报精度越高;
④在回归模型中,x只能解释部分y的变化,故x称为解释变量,y称为预报变量,其中所有正确论断的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)的定义域为[-2,6],x与f(x)部分对应值如表,f(x)的导函数y=f(x)的图象如图所示.
 x-2 5
 f(x)-2-2  3
下列结论:
①函数f(x)在(0,3)上是增函数;
②曲线y=f(x)在x=4处的切线可能与y轴垂直;
③如果当x∈[-2,t]时,f(x)的最小值是-2,那么t的最大值为5;
④?x1,x2∈[-2,6],都有|f(x1)-f(x2)|≤a恒成立,则实数a的最小值是5,其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案