分析 (Ⅰ)由求导公式和法则求出f′(x),根据导数的几何意义和条件求出a的值;
(Ⅱ)由条件设g(x)=f(x)-2x,化简后求出函数g(x)的定义域,求出g′(x)后利用基本不等式判断出g′(x)>0,再判断出g(x)的单调性,根据g(1)和g(e)的符号,判断出函数零点的个数,即可得到方程f(x)=2x根的个数.
解答 解:(Ⅰ)由题意得,f(x)=x2+alnx,则$f′(x)=2x+\frac{a}{x}$,
因为在点P(1,f(1))处的切线斜率为10,
所以f′(1)=2+a=10,解得a=8;
(Ⅱ)方程f(x)=2x有一个实数根,
由(Ⅰ)得,f(x)=x2+8lnx,
设g(x)=f(x)-2x=x2+8lnx-2x,且定义域是(0,+∞),
则$g′(x)=2x+\frac{8}{x}-2$≥2$\sqrt{2x•\frac{8}{x}}-2$=6>0,
所以函数g(x)在(0,+∞)上是增函数,
因为g(1)=1-2=-1<0,g(e)=e2-2e+8>0,
所以函数g(x)在(0,+∞)上有一个零点,
即方程f(x)=2x有一个实数根.
点评 本题考查求导公式和法则,导数的几何意义,导数与函数的单调性关系,以及方程的根与函数零点的相互转化,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com