精英家教网 > 高中数学 > 题目详情
5.函数f(x)=x2-2x,(x<-1)的反函数是y=-$\sqrt{x+1}$+1,(x>3).

分析 令y=x2-2x,x<-1,用y表示出x,交换x、y得函数f(x)的反函数,并求出它的定义域.

解答 解:设y=x2-2x,x<-1,
则y=(x-1)2-1,y>3,
∴x=-$\sqrt{y+1}$+1,y>3;
交换x、y,
得y=-$\sqrt{x+1}$+1,(x>3);
∴函数f(x)=x2-2x,(x<-1)的反函数是
y=-$\sqrt{x+1}$+1,(x>3).
故答案为:y=-$\sqrt{x+1}$+1,(x>3).

点评 本题考查了求反函数的应用问题,解题时应注意定义域和值域的变化,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设直线L1:(m-2)x+3y+2m=0,L2:x+my+6=0,当m=m≠-1且m≠3时,L1与L2相交;当m-1时,L1∥L2;当m$\frac{1}{2}$时,L1⊥L2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知α∈(0,π ),且sinα+cosα=$\frac{7}{13}$,则tanα=-$\frac{12}{5}$;sin2α-sinαcosα-2cos2α=$\frac{154}{169}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}是公比为2的等比数列,若a4=16,则S4=(  )
A.15B.30C.31D.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知平行四边形ABCD,顶点A(1,1),B(4,3),C(1,-1).
(1)求D点的坐标;
(2)若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,且λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$垂直,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在-720°到360°范围内,找出和-225°终边相同的角-585°、-225°、135°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a,b,c∈R,c≠0,n∈N*,下列使用类比推理恰当的是(  )
A.“若a•5=b•5,则a=b”类比推出“若a•0=b•0,则a=b”
B.“(ab)n=anbn”类比推出“(a+b)n=an+bn
C.“(a+b)•c=ac+bc”类比推出“(a•b)•c=ac•bc”
D.“(a+b)•c=ac+bc”类比推出“$\frac{a+b}{c}$=$\frac{a}{c}$+$\frac{b}{c}$”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设Sn为等比数列{an}的前n项和,8a12-a15=0,则$\frac{{S}_{4}}{{S}_{2}}$=(  )
A.5B.8C.-8D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,角A,B,C的对边分别为a,b,c,已知B是A、C的等差中项,且b=2,则△ABC面积的最大值为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案