分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答
解:作出不等式对应的平面区域,
由z=x+2y,得y=-$\frac{1}{2}$x+$\frac{z}{2}$,
平移直线y=-$\frac{1}{2}$x+$\frac{z}{2}$,由图象可知当直线y=-$\frac{1}{2}$x+$\frac{z}{2}$经过点C时,直线的截距最大,此时z最大.
由 $\left\{\begin{array}{l}{x=1}\\{x+y=3}\end{array}\right.$,得 $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,
即C(1,2),
此时z的最大值为z=1+2×2=5,
故答案为:5.
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{2\sqrt{5}}}{5}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | $-\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com