精英家教网 > 高中数学 > 题目详情
设函数f(x)、g(x)分别是定义在R上的奇函数和偶函数,f′(x),g′(x)分别是f(x),g(x)的导函数,当x<0时,f′(x)•g(x)+f(x)•g′(x)>0且g(-3)=0,则f(x)•g(x)<0的解集是(  )
A、(-3,0)∪(0,3)
B、(-3,0)∪(3,+∞)
C、(-∞,-3)∪(3,+∞)
D、(-∞,-3)∪(0,3)
考点:利用导数研究函数的单调性,导数的运算
专题:导数的综合应用
分析:根据f(x)、g(x)的奇偶性,可得F(x)=f(x)g(x)是奇函数.由题中的不等式可得F(x)在区间(-∞,0)上是增函数,结合奇函数性质得在区间(0,+∞)上F(x)也是增函数.最后分x>0和x<0加以讨论,并结合F(-3)=F(3)=0,可求出不等式f(x)g(x)<0的解集.
解答: 解:令F(x)=f(x)g(x),
∵f(x),g(x)分别是定义在R上的奇函数和偶函数,
∴F(x)=f(x)g(x)是定义在R上的奇函数.
又∵当x<0时F′(x)=f′(x)g(x)+f(x)g′(x)>0成立,
∴F(x)在区间(-∞,0)上是增函数,可得它在区间(0,+∞)上也是增函数.
∵g(-3)=0可得F(-3)=0,
∴结合F(x)是奇函数可得F(3)=0,
当x>0时,F(x)=f(x)g(x)<0即F(x)<F(3),结合单调性得0<x<3;
当x<0时,F(x)=f(x)g(x)<0即F(x)<F(-3),结合单调性得x<-3.
因此,不等式f(x)g(x)<0的解集是(-∞,-3)∪(0,3).
故选:D.
点评:本题给出函数F(x)=f(x)g(x)的奇偶性和单调性,求不等式f(x)g(x)<0的解集.着重考查了利用导数研究函数的单调性、函数的单调性与奇偶性的关系等知识点,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x、y满足条件
x+2y-9≤0
x-4y+3≤0
x≥1
,若目标函数z=ax+y(a∈R)取得最大值时的最优解有无数个,则z=ax+y的最小值为(  )
A、
1
2
B、
3
2
C、
3
4
D、
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sinx(其中x∈R)图象F上各点的横坐标缩短到原来的
1
2
倍(纵坐标不变),得到图象F1,再将F1向右平移
π
6
个单位得到图象F2,则F2的函数表达式为(  )
A、y=sin(
1
2
x-
π
12
)(x∈R)
B、y=sin(2x-
π
6
)(x∈R)
C、y=sin(2x-
π
3
)(x∈R)
D、y=sin(2x+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-x-a(a>0,a≠1),那么函数f(x)的零点个数是(  )
A、0个B、1个
C、2个D、至少1个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(3,-4),
n
=(a,3),且
m
n
,则a的值为(  )
A、-4
B、4
C、
9
4
D、-
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin(ωx+φ)(ω>0,0<φ≤
π
2
),且此函数的图象如图所示,则点(ω,φ)的坐标是(  )
A、(4,
π
2
B、(4,
π
4
C、(2,
π
2
D、(2,
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x2-2x+2=0(x∈C)的一个解是(  )
A、-1B、-i
C、2+iD、1+i

查看答案和解析>>

科目:高中数学 来源: 题型:

执行右边的程序框图,若p=0.8,则输出的S,n分别为(  )
A、0.875,3
B、0.875,4
C、0.9375,4
D、0.9375,5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的参数方程是
x=cosθ
y=sinθ
(θ为参数),以直角坐标系xOy的原点为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(cosθ+sinθ)=4.
(1)试求曲线C上任意点M到直线l的距离的最大值;
(2)设P是l上一点,射线OP交曲线C与R点,又点Q在射线OP上,且满足|OP|•|OQ|=|OR|2,当点P在直线l上移动时,试求动点Q的轨迹.

查看答案和解析>>

同步练习册答案