精英家教网 > 高中数学 > 题目详情
3.某单位要从甲、乙、丙、丁四支门球队中选拔两支参加上级比赛,选拔赛采用单循环制(即每两个队比赛一场),并规定积分前两名的队出线,其中胜一场积3分,平一场积1分,负一场积0分.在经过三场比赛后,目前的积分状况如下:甲队积7分,乙队积1分,丙和丁队各积0分.根据以往的比赛情况统计:
 乙队胜的概率乙队平的概率乙队负的概率
与丙 队比赛$\frac{1}{4}$$\frac{1}{4}$$\frac{1}{2}$
与丁队比赛$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$
注:各队之间比赛结果相互独立.
(Ⅰ)选拔赛结束,求乙队积4分的概率;
(Ⅱ)设随机变量X为选拔赛结束后乙队的积分,求随机变量X的分布列与数学期望;
(Ⅲ)在目前的积分情况下,M同学认为:乙队至少积4分才能确保出线,N同学认为:乙队至少积5分才能确保出线.你认为谁的观点对?或是两者都不对?(直接写结果,不需证明)

分析 (Ⅰ)设乙队胜、平、负丙队为事件A1、A2、A3,乙队胜、平、负丁队为事件B1、B2、B3.利用独立事件求概率.
(Ⅱ)列举随机变量X的可能取值,求出各自概率得到分布列.

解答 解:(Ⅰ)设乙队胜、平、负丙队为事件A1、A2、A3,乙队胜、平、负丁队为事件B1、B2、B3
则P(A1)=P(A2)=$\frac{1}{4}$,P(A3)=$\frac{1}{2}$;P(B1)=P(B2)=P(B3)=$\frac{1}{3}$;…2分
设乙队最后积4分为事件C,
则P(C)=P(A1)P(B3)+P(B1)P(A3)=$\frac{1}{4}×\frac{1}{3}+\frac{1}{2}×\frac{1}{3}=\frac{1}{4}$.…4分
(Ⅱ)随机变量X的可能取值为:7,5,4,3,2,1.…5分$P(X=7)=P({A_1})P({B_1})=\frac{1}{4}×\frac{1}{3}=\frac{1}{12}$;$P(X=5)=P({A_1})P({B_2})+P({A_2})P({B_1})=\frac{1}{4}×\frac{1}{3}+\frac{1}{4}×\frac{1}{3}=\frac{1}{6}$;$P(X=4)=P({A_1})P({B_3})+P({A_3})P({B_1})=\frac{1}{4}×\frac{1}{3}+\frac{1}{2}×\frac{1}{3}=\frac{1}{4}$;$P(X=3)=P({A_2})P({B_2})=\frac{1}{4}×\frac{1}{3}=\frac{1}{12}$;$P(X=2)=P({A_2})P({B_3})+P({A_3})P({B_2})=\frac{1}{4}×\frac{1}{3}+\frac{1}{2}×\frac{1}{3}=\frac{1}{4}$;$P(X=1)=P({A_3})P({B_3})=\frac{1}{2}×\frac{1}{3}=\frac{1}{6}$;
随机变量X的分布列为:…8分

X754321
P$\frac{1}{12}$$\frac{1}{6}$$\frac{1}{4}$$\frac{1}{12}$$\frac{1}{4}$$\frac{1}{6}$
$E(X)=7×\frac{1}{12}+5×\frac{1}{6}+4×\frac{1}{4}+3×\frac{1}{12}+2×\frac{1}{4}+1×\frac{1}{6}=\frac{10}{3}$.…10分
(Ⅲ)N同学的观点对,乙队至少积5分才可以出线.…12分
当乙队积5分时,丙队或丁队的得分可能为4,3,2,1,乙队为小组第2出线;
当乙队积4分时,丙队或丁队均有可能为6分或4分,不能确保乙队出线.

点评 本题主要考查了独立事件求概率的方法和随机变量的分布列期望值,属中档题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若直线y=3x上存在点(x,y)满足约束条件$\left\{\begin{array}{l}{x+y+4≥0}\\{2x-y+8≥0}\\{x≤m}\end{array}\right.$,则实数m的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知定义在R上的奇函数f(x)满足f(x+4)=-f(x),且x∈[0,2]时,f(x)=log2(x+1),给出下列结论:
①f(3)=1;
②函数f(x)在[-6,-2]上是减函数;
③函数f(x)的图象关于直线x=1对称;
④若m∈(0,1),则关于x的方程f(x)-m=0在[-8,8]上的所有根之和为-8.
则其中正确的命题为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,点E,F分别在正方体ABCD-A1B1C1D1的棱DD1、AB上,下列命题:
①A1C⊥B1E;
②在平面A1B1C1D1内总存在于平面B1EF平行的直线;
③△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;
④当E、F为中点时,平面B1EF截该正方体所得的截面图形是五边形;
⑤若点P为线段EF的中点,则其轨迹为一个矩形的四周.
其中所有真命题的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.x,y满足约束条件$\left\{\begin{array}{l}x+2y-1≥0\\ x-y≥0\\ 0≤x≤k.\end{array}\right.$若z=x+ky的最小值为-2,则z的最大值为(  )
A.12B.16C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数 f(x)=lnx-ax(a∈R)有两个不相等的零点 x1,x2(x1<x2
(I)求a的取值范围;
(Ⅱ)判断$\frac{2}{{{x_1}+{x_2}}}$与a的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知B,C两点在圆O:x2+y2=1上,A(a,0)为x轴上一点,且a>l.给出以下命题:
①$\overrightarrow{OA}$•$\overrightarrow{OC}$的最小值为一1;
②△OBC面积的最大值为1;
③若a=$\sqrt{2}$,且直线AB,AC都与圆O相切,则△ABC为正三角形;
④若a=$\sqrt{2}$,且$\overrightarrow{AB}$=λ$\overrightarrow{BC}$(λ>0),则当△OBC面积最大时,|AB|=$\frac{\sqrt{6}-\sqrt{2}}{2}$;
⑤若a=$\frac{\sqrt{5}}{2}$,且$\overrightarrow{AB}$=$λ\overrightarrow{BC}$,圆O上的点D满足$\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OD}$,则直线BC的斜率是$±\frac{1}{2}$.
其中正确的是⑤(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)证明:①C${\;}_{n}^{r}$+C${\;}_{n}^{r+1}$=C${\;}_{n+1}^{r+1}$;②C${\;}_{2n+2}^{n+1}$=2C${\;}_{2n+1}^{n}$(其中n,r∈N*,0≤r≤n-1);
(2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设2n+1局,每局比赛甲获胜的概率均为p(p>$\frac{1}{2}$),首先赢满n+1局者获胜(n∈N*).
①若n=2,求甲获胜的概率;
②证明:总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设复数z=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,则满足zn=z的大于1的正整数n中,最小是(  )
A.7B.4C.3D.2

查看答案和解析>>

同步练习册答案