精英家教网 > 高中数学 > 题目详情
已知三棱柱ABC-A1B1C1中,D为线段A1C1中点.求证:BC1∥平面AB1D.
考点:直线与平面平行的判定
专题:空间位置关系与距离
分析:连A1B交AB1于点E,利用三角形中位线能证明BC1∥平面AB1D.
解答: 解:连A1B交AB1于点E,
∵四边形A1ABB1为矩形,
∴E为AB1的中点,
又D为线段A1C1中点,
∴BC1∥DE,
∵BC1?平面AB1D,DE?平面AB1D.
∴BC1∥平面AB1D.
点评:本题考查直线与平面平行的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=
2
2

(Ⅰ)求证:EF∥平面ABCD;
(Ⅱ)求证:AC⊥BE;
(Ⅲ)三棱锥A-BEF的体积是否为定值,若是,求出该定值;若不是,说明理由(棱锥的体积V=
1
3
Sh).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点M(0,-2)为单位圆x2+y2=1外一点,N为单位圆上任意一点,∠MON的平分线交MN于Q,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一颗骰子先后抛掷2次,观察向上的点数,求:
(1)两数之和为6的概率;
(2)两数之积是6的倍数的概率;
(3)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的内部的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:a=x2-2y+
π
3
,b=y2-2z+
π
6
,c=z2-2x+
π
2
(x,y,z∈R),证明:a,b,c中至少有一个是正数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-2(p+2)x+p2=0,x∈R},B={x|x≥0},且A∩B=∅,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题
①z1,z2∈C,z1+z2为实数的充要条件是;z1,z2互为共轭复数
②将5封信投入3个邮筒,不同的投法有53种投递方法;
③函数f(x)=e-x•x2在x=2处取得极大值;
④对于任意n∈N*,C
 
0
n
+C
 
1
n
+C
 
2
n
+…+C
 
n
n
都是偶数.
其中真命题的序号是
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆的两个焦点,在椭圆上存在点M满足
MF1
MF2
=0,则椭圆离心率的取值范围是
 

查看答案和解析>>

同步练习册答案