精英家教网 > 高中数学 > 题目详情
已知全集为R,集合A={x|2≤x<4},B={x|3x-7≥8-2x},求:
(1)A∩B;
(2)(∁RA)∩(∁RB).
考点:交、并、补集的混合运算,交集及其运算
专题:集合
分析:(1)求出B中不等式的解集确定出B,求出A与B的交集即可;
(2)根据全集R求出A与B的补集,找出两补集的交集即可.
解答: 解:(1)∵A={x|2≤x<4},B={x|3x-7≥8-2x}={x|x≥3},
∴A∩B={x|3≤x<4};
(2)∵全集为R,集合A={x|2≤x<4},B={x|x≥3},
∴(∁RA)={x|x<2或x≥4},∁RB={x|x<3},
∴(∁RA)∩(∁RB)={x|x<2}.
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一般地,在两个分类变量的独立性检验过程中有如下表格:如图是两个分类变量X﹑Y的2×2联表的一部分,则下列说法正确的是(  )
P(K2≥k00.400.250.150.100.050.0250.0100.0050.001
k00.7081.3232.0722.7063.8415.0246.6357.87910.828
  y1y2 
 x1 15 5
 x2 1015 
A、可以在犯错误概率不超过0.025的前提下认为X与Y有关系
B、可以在犯错误概率不超过0.010的前提下认为X与Y有关系
C、可以在犯错误概率不超过0.005的前提下认为X与Y有关系
D、可以在犯错误概率不超过0.001的前提下认为X与Y有关系

查看答案和解析>>

科目:高中数学 来源: 题型:

随着工业化以及城市车辆的增加,城市的空气污染越来越严重,空气质量指数API一直居高不下,对人体的呼吸系统造成了严重的影响.现调查了某市500名居民的工作场所和呼吸系统健康,得到2×2列联表如下:
室外工作室内工作合计
有呼吸系统疾病150
无呼吸系统疾病100
合计200
补全2×2列联表,你是否认为感染呼吸系统疾病与工作场所有关.
参考公式:X2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

P(X2≥k)    0.050      0.010
k    3.841      6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

P为椭圆
x2
25
+
y2
16
=1上任意一点,F1,F2为左右焦点.如图所示:
(1)若PF1的中点为M,求证:|MO|=5-
1
2
|PF1|
(2)若∠F1PF2=60°,求|PF1|•|PF2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2+bx+1.(a,b∈R)
(Ⅰ)若f(x)在x=-1处有极值1,求b的值;
(Ⅱ)若a=
3
2
时,f(x)在x∈[0,2]上单调递增,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,求直线l的方程;
(2)求以点(2,-1)为圆心且与直线x+y=6相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2+lnx+(a-4)x在(1,+∞)上是增函数.
(I)求实数a的取值范围;
(Ⅱ)设g(x)=e2x-2aex+a,x∈[0,ln3],求函数g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行
(Ⅰ)求a,b的值
(Ⅱ)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求与双曲线
x2
16
-
y2
4
=1有公共焦点,且过点(3
2
,2)的双曲线的标准方程,并写出其渐近线方程.

查看答案和解析>>

同步练习册答案