分析 根据平面中的某些性质类比推理出空间中的某些性质,一般遵循“点到线”,“线到面”,“面到体”等原则,由在平面几何中,已知“正三角形内一点到三边距离之和是一个定值”,是一个与线有关的性质,由此可以类比推出空间中一个与面有关的性质,由此即可得到答案.
解答 解:∵平面几何中,已知“正三角形内一点到三边距离之和是一个定值”,
根据平面中边的性质可类比为空间中面的性质
则我们可以将“正三角形”类比为“正四面体”
“到三边距离之和”类比为“到四个面的距离之和”
故答案为:正四面体内一点到四个面距离之和是一个定值.
点评 本题考查的知识点是类比推理,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
科目:高中数学 来源: 题型:选择题
| A. | 4:5:6 | B. | 3:5:7 | C. | 4:6:8 | D. | 3:5:6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.2 | B. | 0.3 | C. | 0.4 | D. | 0.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com