精英家教网 > 高中数学 > 题目详情
15.若集合U={1,2,3,4,5,6},A={2,5,6},B={1,3,5},那么(∁UA)∩B=(  )
A.{5}B.{1,3}C.{2,6}D.{1,3,4,5,6}

分析 由补集和交集的定义,计算即可得到所求集合.

解答 解:集合U={1,2,3,4,5,6},A={2,5,6},B={1,3,5},
那么(∁UA)∩B={1,3,4}∩{1,3,5}={1,3}.
故选:B.

点评 本题考查集合的补集和交集的求法,注意运用定义法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=($\frac{1}{2}$)x,那么f(-2),f(-$\frac{π}{2}$),f(3)的大小关系是(  )
A.f(-$\frac{π}{2}$)>f(-2)>f(3)B.f(-$\frac{π}{2}$)>f(3)>f(-2)C.f(3)>f(-$\frac{π}{2}$)>f(-2)D.f(3)$>f(-2)>f(-\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,值域为(0,+∞)的是(  )
A.sinx+cosxB.$y=\sqrt{1-{2^x}}$C.y=2x2+x+1D.$y={2^{-\frac{x}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.cos50°($\sqrt{3}$-tan10°)的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,M为PB的中点,平面ADM交PC于N点.
(1)求证:PB⊥DN;
(2)求二面角P-DN-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知α∈(0,π),sin(α+$\frac{π}{4}$)=-$\frac{3}{5}$,则tanα=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,当输出i的值是5时,输入的整数n的最大值是(  )
A.45B.44C.43D.42

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F为  $({\sqrt{5},0})$,点F到某条渐近线的距离为1,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{4}$-y2=1B.x2-$\frac{{y}^{2}}{4}$=1C.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1D.$\frac{3{x}^{2}}{5}$-$\frac{3{y}^{2}}{20}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.为了得到函数y=3sin(2x+$\frac{π}{4}$)的图象,只需把函数y=3sin2x的图象上所有的点(  )
A.向左平移$\frac{π}{4}$单位B.向左平移$\frac{π}{8}$个单位
C.向右平移$\frac{π}{4}$个单位D.向右平移$\frac{π}{8}$个单位

查看答案和解析>>

同步练习册答案