精英家教网 > 高中数学 > 题目详情
9.一个10人的办公室里有5名男性和5名女性,现在需要形成一个由4人组成的委员会,研究办公环境中是否允许吸烟的问题.管理方声明人员是随机选择的,但是最终选择的结果为“4人都是男性”.
(1)选择4人都是男性的概率是多少?
(2)管理方的声明可信吗?

分析 (1)先求出基本事件总数,再求出最终选择的结果为“4人都是男性”包含的基本事件个数,由此能求出选择4人都是男性的概率.
(2)随机选择4人,应该是选到2名男性和2名女性的概率较大,从而得到管理方的声明不可信.

解答 解:(1)一个10人的办公室里有5名男性和5名女性,随机选择4人形成一个由4人组成的委员会,
基本事件总数n=${C}_{10}^{4}$,
最终选择的结果为“4人都是男性”包含的基本事件个数m=${C}_{5}^{4}$,
∴选择4人都是男性的概率是p=$\frac{m}{n}$=$\frac{{C}_{5}^{4}}{{C}_{10}^{4}}$=$\frac{5}{42}$.
(2)∵一个10人的办公室里有5名男性和5名女性,
∴从中随机选择4人,应该是选到2名男性和2名女性的概率较大,
∴管理方的声明不可信.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知点P(x,y)在不等式组$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$表示的平面区域上运动,则z=x2+y2的取值范围是(  )
A.[$\frac{3}{5}$,4]B.[$\frac{4}{5}$,5]C.[$\frac{4}{5}$,6]D.[$\frac{3}{5}$,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数z=i2017,则z的虚部为(  )
A.-iB.iC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求(1-x)3展开式的各项系数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(1-x24($\frac{x+1}{x}$)5的展开式中$\frac{1}{x}$的系数为-29.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}=(2-t,-3,0)$,$\overrightarrow{b}=(1,t,-2)$,t∈R,则$|\overrightarrow{a}+\overrightarrow{b}|$的最小值是(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设数列{an}满足${a_n}={i^n}$,i是虚数单位,n∈N*,则数列{an}的前2015项和为(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.△ABC中D是AB的中点,O是三角形的重心,则$\overrightarrow{DO}$=$-\frac{1}{6}$($\overrightarrow{CA}$+$\overrightarrow{CB}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点到焦点的距离为2,离心率为$\frac{\sqrt{3}}{2}$.
(1)求a,b的值,
(2)设P是椭圆C长轴上的一个动点,过点P作斜率为1的直线交椭圆于A,B两点,求△OAB面积的最大值.

查看答案和解析>>

同步练习册答案