精英家教网 > 高中数学 > 题目详情
已知数列满足.
(1)求证:数列是等比数列,并求数列的通项公式
(2)设,数列的前项和为,求证:对任意,有成立.
(1);(2)见解析。

试题分析:(1)根据对数列的通项公式进行配凑,根据定义去证明;(2)结合(1)及三角函数的周期性得然后放缩构造等比数列进行求和,
(1)
数列是首项为3,公比为-2的等比数列.  4′
从而            6′
(2)       8′
时,则
 12′
                               14′
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列满足
(1)求数列的通项公式
(2)设,求数列的前n项和
(3)设,数列的前n项和为.求证:对任意的

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若数列{an}为等比数列,且a1=1,q=2,则Tn+…+的结果可化为(  )
A.1-B.1-
C.(1-)D.(1-)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设{an}是由正数组成的等比数列,Sn为其前n项和.已知a2·a4=1,S3=7,则S5=(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设等比数列的前项和为,已知的值为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列的前项和为,且.
(1)求的通项公式;
(2)设恰有5个元素,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2012·辽宁高考]已知等比数列{an}为递增数列,且a=a10,2(an+an+2)=5an+1,则数列{an}的通项公式an=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2014·洛阳模拟)在数列{an}中,an+1=can(c为非零常数),前n项和为Sn=3n+k,则实数k为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知等比数列满足,数列的前项和,则       

查看答案和解析>>

同步练习册答案