精英家教网 > 高中数学 > 题目详情
3.已知集合A1,A2,满足A={x|x∈A1或x∈A2},则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={1,2,3}的不同分拆的种数是(  )
A.27B.26C.9D.8

分析 根据分拆的定义,分别进行讨论即可.

解答 解:由题意可知集合A的子集共有8个,集合A1,A2满足A1∪A2=A,
分类讨论
①若A1=∅时,A2=A,此时只有一种分拆.
②若A1是单元素集时,共有六种分拆,{1}与{2,3},{1}与{1,2,3},{2}与{1,3},{2}与{1,2,3},{3}与{1,2},{3}与{1,2,3}.
③若A1是双元素集时,共有12种,{1,2}与{3},{1,3},{2,3},{1,2,3};
{1,3}与{2},{1,2},{2,3},{1,2,3};
{2,3}与{1},{1,2},{1,3},{1,2,3};
④若A1=A={1,2,3},则A2=∅,{1},{2},{3},{1,2},{1,3},{2,3}共7种.
⑤若A1=A2={1,2,3},由一种拆分.
综上有1+6+12+7+1=27.
故选:A.

点评 本题主要考查集合的关系的应用,根据定义通过讨论即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知直线3x+4y-15=0与圆x2+y2=25交于A、B两点,点C在圆O上,且S△ABC=8,则满足条件的点C的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数y=tan($\frac{π}{3}$x+$\frac{π}{4}$)的定义域、周期、单调区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解不等式:-x2+8x-2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x+4},x≤4}\\{-lo{g}_{2}(x+1),x>4}\end{array}\right.$,若f(a)=$\frac{1}{8}$.求f[f(a+6)].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\frac{lg(1-{x}^{2})}{|x-2|-2}$是奇函数.(填“奇”、“偶”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,且Sn=($\frac{{a}_{n}+1}{2}$)2(n∈N*),求数列{an}的通项公式an和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知曲线C和C′关于直线x-y-2=0对称,若曲线C的方程为f(x,y)=0,则曲线C′的方程为f(y+2,x-2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队取胜乙队的概率为0.6,本场比赛采用五局三胜,即先胜三局的队获胜,比赛结束,设各局比赛相互没有影响.求:
(1)甲队3:0获胜的概率;
(2)设本场比赛结束所需的比赛局数为ξ,求随机变量ξ的分布列.

查看答案和解析>>

同步练习册答案