分析 由条件利用正切函数的定义域、周期性、单调性、对称性,求得y=tan($\frac{π}{3}$x+$\frac{π}{4}$)的定义域、周期、单调区间和对称中心.
解答 解:对于函数y=tan($\frac{π}{3}$x+$\frac{π}{4}$),令$\frac{π}{3}$x+$\frac{π}{4}$≠kπ+$\frac{π}{2}$,k∈z,求得x≠3k+$\frac{3}{4}$,
故函数的定义域为{x|x≠3k+$\frac{3}{4}$,k∈z}.
此函数的周期为$\frac{π}{3}$,令kπ-$\frac{π}{2}$<$\frac{π}{3}$x+$\frac{π}{4}$<kπ+$\frac{π}{2}$,k∈z,求得3k-$\frac{9}{4}$<3k+$\frac{3}{4}$,
故函数的单调增区间为(3k-$\frac{9}{4}$,3k+$\frac{3}{4}$),k∈z.
令$\frac{π}{3}$x+$\frac{π}{4}$=$\frac{kπ}{2}$,k∈z,求得x=$\frac{3}{4}$(2k-1),故函数的图象的对称中心为($\frac{6k-3}{4}$,0),k∈z.
点评 本题主要考查正切函数的图象特征,正切函数的定义域、周期性、单调性、对称性,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 12 | C. | 18 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 27 | B. | 26 | C. | 9 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com