精英家教网 > 高中数学 > 题目详情
5.向量$\overrightarrow{AB}$=(1,1),$\overrightarrow{CD}$=($\sqrt{1-x}$,$\sqrt{x+3}$),f(x)=$\overrightarrow{AB}$•$\overrightarrow{CD}$,函数f(x)的最大值为2$\sqrt{2}$.

分析 f(x)=$\overrightarrow{AB}$•$\overrightarrow{CD}$=$\sqrt{1-x}+\sqrt{x+3}$=y,(-3≤x≤1),可得y2=4+2$\sqrt{-(x+1)^{2}+4}$,再利用二次函数的单调性即可得出.

解答 解:f(x)=$\overrightarrow{AB}$•$\overrightarrow{CD}$=$\sqrt{1-x}+\sqrt{x+3}$=y,(-3≤x≤1)
∴y2=4+2$\sqrt{-(x+1)^{2}+4}$≤4+4=8,当x=-1时取等号,
∴-2$\sqrt{2}$≤y≤2$\sqrt{2}$,
∴函数f(x)的最大值为2$\sqrt{2}$.
故答案为:2$\sqrt{2}$.

点评 本题考查了数量积运算性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知动圆C过定点A(0,1),且与直线y=-1相切.求:
(1)动圆的圆心C的轨迹方程;
(2)过点B(0,-2)的直线l与动圆的圆心的轨迹C交于两个不同的点M,N,若$\overrightarrow{AM}$•$\overrightarrow{AN}$<0,求直线l的斜率的取值范围;
(3)若直线m过(0,$\frac{1}{2}$)与曲线C相交于两点P、Q,过P、Q分别作曲线C的切线,设两条切线的交点为G,求△GPQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,过点N(0,1)和M(m,-1)(m≠0)的动直线l与抛物线C:x2=2py交于P、Q两点(点P在M、N之间),O为坐标原点.
(1)若p=2,m=2,求△OPQ的面积S;
(2)对于任意的动直线l,是否存在常数p,总有∠MOP=∠PON?若存在,求出p的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线3x+4y-15=0与圆x2+y2=25交于A、B两点,点C在圆O上,且S△ABC=8,则满足条件的点C的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.假如今年省运会给岭师附中高中三个年级7个自主推荐的志愿者名额,则每个年级至少分到一个名额的方法数为(  )
A.10B.15C.21D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.画出函数y=x-2sinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.直线y=m分别与曲线y=2x+3,y=x+lnx交于A、B,则|AB|的最小值为(  )
A.$\frac{3}{2}$B.$\frac{3\sqrt{2}}{4}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数y=tan($\frac{π}{3}$x+$\frac{π}{4}$)的定义域、周期、单调区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,且Sn=($\frac{{a}_{n}+1}{2}$)2(n∈N*),求数列{an}的通项公式an和Sn

查看答案和解析>>

同步练习册答案