精英家教网 > 高中数学 > 题目详情
二项式(ax2-
2
x
5的展开式中常数项为160,则a的值为
 
考点:二项式系数的性质
专题:二项式定理
分析:在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项,再根据常数项等于160求得实数a的值.
解答: 解:由通项公式 Tr+1=
C
r
5
•a2-r•x10-2r•(-2)r•x-
r
2
=
C
r
5
•a2-r•(-2)r
x10-
5r
2

令10-
5r
2
=0,求得r=4,可得常数项为(-2)4•C
 
4
5
a=160,解得a=2,
故答案为:2.
点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

解关于x的方程:x(x-1)(x-2)=120.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c为三角形的三边,且c为最大边,现有三个命题:
①?x∈(-∞,1),f(x)>0;
②?x∈R,ax,bx,cx均能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则?x∈(1,2),使f(x)=0.
其中的真命题为
 
(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

当x=
 
时,函数f(x)=|x-1|+|x-2|+|x-3|有最小值,最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为△ABC的外心,AB=4,AC=2,∠BAC=120°.若
AO
=λ1
AB
+λ2
AC
,则λ12=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列选项中,说法正确的是(  )
A、“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”
B、若向量
a
b
满足
a
b
<0,则
a
b
的夹角为钝角
C、若am2≤bm2,则a≤b
D、命题“p∨q为真”是命题“p∧q为真”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

下列判断正确的是(  )
A、棱柱中只能有两个面可以互相平行
B、底面是正方形的直四棱柱是正四棱柱
C、底面是正六边形的棱台是正六棱台
D、底面是正方形的四棱锥是正四棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在区间(0,+∞)上是增函数的是(  )
A、y=-2x+3
B、y=
-2
x-1
C、y=-x2
D、y=x2-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点在x轴,焦距为2
3
,F1,F2是椭圆的左右焦点,P为椭圆上一点,且|PF1|+|PF2|=4.
(Ⅰ)求此椭圆C的标准方程;
(Ⅱ)直线l过焦点F1,斜率为1,交椭圆C于A,B两点,求线段AB的长.

查看答案和解析>>

同步练习册答案