精英家教网 > 高中数学 > 题目详情
某高校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(1)求出第4组的频率;
(2)如果用分层抽样的方法从“优秀”和“良好”的学生中选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?
考点:频率分布直方图,古典概型及其概率计算公式
专题:概率与统计
分析:(1)根据频率分步直方图的性质,根据所给的频率分步直方图中小矩形的长和宽,求出矩形的面积,即这组数据的频率.
(2)根据概率公式计算,事件“5位同学中抽两位同学”有10种可能,而且这些事件的可能性相同,其中事件“至少有一人是“优秀””可能种数是9,那么即可求得事件M的概率.
解答: 解:(1)其它组的频率为
(0.01+0.07+0.06+0.02)×5=0.8,
所以第四组的频率为0.2,…(5分)
(2)依题意良好的人数为40×0.4=16人,优秀的人数为40×0.6=24人
优秀与良好的人数比为3:2,所以采用分层抽样的方法抽取的5人中有优秀3人,良好2人,记从这5人中选2人至少有1人是优秀为事件M,将考试成绩优秀的三名学生记为A,B,C,考试成绩良好的两名学生记为a,b  从这5人中任选2人的所有基本事件包括:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,ab共10个基本事件
事件M含的情况是:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,共9个
所以P(M)=
9
10
…(12分)
点评:本题考查频率分步直方图的性质,考查等可能事件的概率,本题是一个概率与统计的综合题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=
5
9
,则P(η≥2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,对称轴为坐标轴,椭圆C的右焦点与抛物线y2=4
3
x
的焦点重合,且椭圆C过点(
3
,-
1
2
)

(I)求椭圆C的方程;
(II)过点(
6
5
,0)
作直线l交椭圆C于M,N两点(直线l与x轴不重合),A为椭圆C的右顶点,试判断以MN为直径的圆是否恒过点A,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-6x+5,x∈[1,a],并且函数f(x)的最大值为f(a),则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(2,1)的直线l与x轴、y轴正半轴交于A,B两点,求满足下列条件的直线l的方程,O为坐标原点,
(1)△AOB面积最小时;
(2)|OA|+|OB|最小时;
(3)|PA|•|PB|最小时.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2-2,x≤0
3x-2,x>0
,若|f(x)|≥ax在x∈[-1,1]上恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,AB=3,BC=5,∠ABC=120°将△ABC绕直线AB旋转一周,则所形成的旋转体的侧面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+ax+3,x∈[0,2]
(Ⅰ)若a=2,求f(x)的最值,并说明当f(x)取最值时的x的值;
(Ⅱ)若f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
不共线,若存在非零实数x,y,使得
c
=
a
+2x
b
d
=-y
a
+2(2-x2
b

(1)当
c
=
d
时,求x,y的值;
(2)若
a
=(cos
π
6
,sin(-
π
6
)
),
b
=(sin
π
6
,cos
π
6
),且
c
d
,试求函数y=f(x)的表达式.

查看答案和解析>>

同步练习册答案