19£®ÒÑÖªº¯Êýf£¨x£©=ax2-£¨a+2£©x+lnx£¨x£¾0£¬ÆäÖÐaΪʵÊý£©£®
£¨¢ñ£©µ±a=1ʱ£¬ÇóÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨¢ò£©µ±a£¾0ʱ£¬Èôf£¨x£©ÔÚÇø¼ä[1£¬e]ÉϵÄ×îСֵΪ-2£¬ÇóaµÄȡֵ·¶Î§£»
£¨¢ó£©Èôg£¨x£©=f£¨x£©-ax2+£¨a+2£©xʱ£¬ÁîF£¨x£©=g£¨x£©+g¡ä£¨x£©£¬¸ø¶¨x1£¬x2¡Ê£¨1£¬+¡Þ£©£¬x1£¼x2£¬¶ÔÓÚÁ½¸ö´óÓÚ1µÄÕýÊý¦Á£¬¦Â£¬´æÔÚʵÊýmÂú×㣺¦Á=mx1+£¨1-m£©x2£¬¦Â=£¨1-m£©x1+mx2£¬²¢ÇÒʹµÃ²»µÈʽ|F£¨¦Á£©-F£¨¦Â£©|£¼|F£¨x1£©-F£¨x2£©|ºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©µ±a=1ʱ£¬Çó³öf'£¨1£©¼°f£¨1£©¼´¿É£»
£¨¢ò£©µ±a£¾0ʱÁîf'£¨x£©=0£¬½âÖ®µÃ$x=\frac{1}{2}$»ò$x=\frac{1}{a}$£®×ÛºÏ$0£¼\frac{1}{a}¡Ü1$¡¢$1£¼\frac{1}{a}£¼e$¡¢$\frac{1}{a}¡Ýe$ÈýÖÖÇé¿ö¿¼ÂǼ´¿É£®
£¨¢ó£©ÏÈÅжÏF£¨x£©ÔÚÇø¼ä£¨1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬´Ó¶øµ±x¡Ý1ʱ£¬F£¨x£©£¾0£¬ÔÙ×ÛºÏm¡Ê£¨0£¬1£©¡¢m¡Ü0¡¢m¡Ý1ÈýÖÖÇé¿ö¼´¿ÉµÃʵÊýmµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©µ±a=1ʱ£¬$f£¨x£©={x^2}-3x+lnx£¬{f^'}£¨x£©=2x-3+\frac{1}{x}$£®
ÒòΪf'£¨1£©=0£¬f£¨1£©=-2£¬ËùÒÔÇÐÏß·½³ÌÊÇy=-2£»
£¨¢ò£©$f¡ä£¨x£©=2ax-£¨a+2£©+\frac{1}{x}$=$\frac{2a{x}^{2}-£¨a+2£©x+1}{x}$=$\frac{£¨2x-1£©£¨ax-1£©}{x}$£¨x£¾0£©
ÒòΪa£¾0£¬¹ÊÁîf'£¨x£©=0£¬µÃ$x=\frac{1}{2}$»ò$x=\frac{1}{a}$£®
£¨1£©µ±$0£¼\frac{1}{a}¡Ü1$£¬¼´a¡Ý1ʱ£¬f£¨x£©ÔÚ[1£¬e]Éϵ¥µ÷µÝÔö£¬
ËùÒÔf£¨x£©ÔÚ[1£¬e]ÉϵÄ×îСֵÊÇf£¨1£©=-2£¬ÊʺÏÌâÒ⣻
£¨2£©µ±$1£¼\frac{1}{a}£¼e$ʱ£¬ÔÚ$[1£¬\frac{1}{a}]$ÉÏf'£¨x£©£¼0£¬f£¨x£©µ¥µ÷µÝ¼õ£¬
ÔÚ$[\frac{1}{a}£¬e]$ÉÏf'£¨x£©£¾0£¬f£¨x£©µ¥µ÷µÝÔö£¬
ËùÒÔf£¨x£©µÄ×îСֵÊÇ$f£¨\frac{1}{a}£©£¼f£¨1£©=-2$£¬²»ºÏÌâÒ⣻
£¨3£©µ±$\frac{1}{a}¡Ýe$ʱ£¬f£¨x£©ÔÚ£¨1£¬e£©Éϵ¥µ÷µÝ¼õ£¬
ËùÒÔ£¬f£¨x£©ÔÚ[1£¬e]ÉϵÄ×îСֵÊÇf£¨e£©£¼f£¨1£©=-2£¬²»ºÏÌâÒ⣬
×ÛÉÏ¿ÉÖª£¬aµÄȡֵ·¶Î§ÊÇ[1£¬+¡Þ£©£®
£¨¢ó£©$F£¨x£©=g£¨x£©+g'£¨x£©=lnx+\frac{1}{x}$£¬
ÓÉ$F¡ä£¨x£©=\frac{1}{x}-\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}¡Ý0$¿ÉµÃx¡Ý1£¬
ËùÒÔF£¨x£©ÔÚÇø¼ä£¨1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
¡àµ±x¡Ý1ʱ£¬F£¨x£©¡ÝF£¨1£©£¾0£¬
¢Ùµ±m¡Ê£¨0£¬1£©Ê±£¬ÓЦÁ=mx1+£¨1-m£©x2£¾mx1+£¨1-m£©x1=x1£¬
¦Á=mx1+£¨1-m£©x2£¼mx2+£¨1-m£©x2=x2£¬
µÃ¦Á¡Ê£¨x1£¬x2£©£¬Í¬Àí¦Â¡Ê£¨x1£¬x2£©£¬
¡àÓÉf£¨x£©µÄµ¥µ÷ÐÔÖª0£¼F£¨x1£©£¼F£¨¦Á£©¡¢F£¨¦Â£©£¼F£¨x2£©£¬
´Ó¶øÓÐ|F£¨¦Á£©-F£¨¦Â£©|£¼|F£¨x1£©-F£¨x2£©|£¬·ûºÏÌâÉ裮
¢Úµ±m¡Ü0ʱ£¬¦Á=mx1+£¨1-m£©x2¡Ýmx2+£¨1-m£©x2=x2£¬
¦Â=mx1+£¨1-m£©x2¡Ümx1+£¨1-m£©x1=x1£¬
ÓÉf£¨x£©µÄµ¥µ÷ÐÔÖª0£¼F£¨¦Â£©¡ÜF£¨x1£©£¼F£¨x2£©¡ÜF£¨¦Á£©£¬
¡à|F£¨¦Á£©-F£¨¦Â£©|¡Ý|F£¨x1£©-F£¨x2£©|£¬ÓëÌâÉè²»·û£¬
¢Ûµ±m¡Ý1ʱ£¬Í¬Àí¿ÉµÃ¦Á¡Üx1£¬¦Â¡Ýx2£¬
µÃ|F£¨¦Á£©-F£¨¦Â£©|¡Ý|F£¨x1£©-F£¨x2£©|£¬ÓëÌâÉè²»·û£®
¡à×ۺϢ١¢¢Ú¡¢¢ÛµÃm¡Ê£¨0£¬1£©£®

µãÆÀ ±¾Ì⿼²éÀûÓõ¼Êý½â¾öº¬²»µÈʽµÄÏà¹ØÎÊÌ⣬¿¼²é·ÖÀàÌÖÂÛµÄ˼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Å×ÎïÏßC£ºx2=2py£¨p£¾0£©µÄ×¼Ïߵķ½³ÌΪy=-1£®
£¨1£©ÇóÅ×ÎïÏßCµÄ±ê×¼·½³Ì£»
£¨2£©ÔÚÅ×ÎïÏßCÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃ¹ýµãP´¦µÄÖ±Ïß½»CÓÚÁíÒ»µãQ£¬Âú×ãÒÔÏß¶ÎPQΪֱ¾¶µÄÔ²¾­¹ýÅ×ÎïÏߵĽ¹µã£¬ÇÒPQÓëÅ×ÎïÏßCÔÚµãP´¦µÄÇÐÏß´¹Ö±£¬Çó³öµãPµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªµãAÊÇÅ×ÎïÏßx2=4yµÄ¶Ô³ÆÖáÓë×¼ÏߵĽ»µã£¬µãBΪÅ×ÎïÏߵĽ¹µã£¬PÔÚÅ×ÎïÏßÉÏÇÒÂú×ã|PA|=m|PB|£¬µ±mÈ¡×î´óֵʱ£¬µãPÇ¡ºÃÔÚÒÔA£¬BΪ½¹µãµÄË«ÇúÏßÉÏ£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{5}-1}{2}$B£®$\frac{\sqrt{2}+1}{2}$C£®$\sqrt{2}$+1D£®$\sqrt{5}$-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªc=6£¬sinA-sinC=sin£¨A-B£©£®
£¨¢ñ£©Èôb=2$\sqrt{7}$£¬Çó¡÷ABCµÄÃæ»ý£»
£¨¢ò£©Èô1¡Üa¡Ü6£¬ÇósinCµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èçͼ£¬ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬ÒÑÖª|$\overrightarrow{AB}$|=4£¬|$\overrightarrow{BC}$|=2£¬$\overrightarrow{PD}$=$\frac{1}{4}$$\overrightarrow{CD}$£¬¡ÏDAB=60¡ã£¬Ôò$\overrightarrow{AP}$•$\overrightarrow{BP}$=£¨¡¡¡¡£©
A£®11B£®5C£®-1D£®-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®É趨ÒåÓòΪ£¨0£¬+¡Þ£©µÄµ¥µ÷º¯Êýf£¨x£©£¬¶ÔÓÚÈÎÒâµÄx¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐf[f£¨x£©-x2]=6£¬Ôòf£¨4£©=£¨¡¡¡¡£©
A£®12B£®14C£®16D£®18

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Óɲ»µÈʽ×é$\left\{\begin{array}{l}{x+y¡Ý1}\\{{e}^{x}-y¡Ý0}\\{0¡Üx¡Ü1}\end{array}\right.$È·¶¨µÄÆ½ÃæÇøÓòΪM£¬Óɲ»µÈʽ×é$\left\{{\begin{array}{l}{0¡Üx¡Ü1}\\{0¡Üy¡Üe}\end{array}}\right.$È·¶¨µÄÆ½ÃæÇøÓòΪN£¬ÔÚNÄÚËæ»úµÄȡһµãP£¬ÔòµãPÂäÔÚÇøÓòMÄڵĸÅÂÊΪ£¨¡¡¡¡£©
A£®1-$\frac{3}{e}$B£®1-$\frac{2}{e}$C£®1-$\frac{1}{e}$D£®1-$\frac{3}{2e}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa¡¢b¡¢c£¬ÇÒbcosC+$\sqrt{3}$bsinC-a-c=0
£¨1£©ÇóB£»
£¨2£©Èô|$\overrightarrow{BA}$+$\overrightarrow{BC}$|=2$\sqrt{3}$£¬Çó¡÷ABCÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÉèÊýÁÐ{an}ÊÇÊ×ÏîΪ1£¬¹«²îΪdµÄµÈ²îÊýÁУ¬ÇÒa1£¬a2-1£¬a3-1ÊǵȱÈÊýÁÐ{bn}µÄǰÈýÏ
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Éècn=an•bn£¬Çó{cn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸