精英家教网 > 高中数学 > 题目详情
4.已知抛物线C:y2=4x的焦点为F,直线AB过F点与抛物线C交抛物线于A、B两点,且AB=6,若AB的垂直平分线交x轴于P点,则|OP|=(  )
A.3B.4C.5D.6

分析 先根据抛物线方程求出p的值,再由抛物线的性质求出AB的垂直平分线方程,可得到答案.

解答 解:∵抛物线y2=4x,∴p=2,
设经过点F的直线y=k(x-1)与抛物线相交于A、B两点,A(x1,y1),B(x2,y2),
直线y=k(x-1)代入y2=4x,整理可得k2x2-(2k2+4)x+k2=0,
∴x1+x2=2+$\frac{4}{{k}^{2}}$
利用抛物线定义,AB中点横坐标为x1+x2=|AB|-p=6-2=4.AB中点横坐标为2
∴2+$\frac{4}{{k}^{2}}$=4,∴k=±$\sqrt{2}$
AB中点纵坐标为k,AB的垂直平分线方程为y-k=-$\frac{1}{k}$(x-2),
令y=0,可得x=4,
∴|OP|=4.
故选:B.

点评 本题主要考查了抛物线的性质.属中档题.解题时要认真审题,仔细解答,注意等价转化思想的合理运用,确定AB的垂直平分线方程是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.两圆x2+y2-x+y-2=0和x2+y2=5的公共弦长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线C:${x^2}-\frac{y^2}{8}=1$的左右焦点分别是F1,F2,过F2的直线l与C的左右两支分别交于A,B两点,且|AF1|=|BF1|,则|AB|=(  )
A.$2\sqrt{2}$B.3C.4D.$2\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{{x}^{2}}{4}$-y2=1的右顶点到该双曲线一条渐近线的距离为(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{4\sqrt{5}}{5}$C.$\frac{2\sqrt{3}}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,a2+a3=8,前7项和S7=49,则数列{an}的公差等于(  )
A.1B.2C.$\frac{20}{3}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知M(x0,y0)是曲线C:$\frac{{x}^{2}}{2}$-y=0上的一点,F是C的焦点,过M作x轴的垂线,垂足为N,若$\overrightarrow{MF}$$•\overrightarrow{MN}$<0,则x0的取值范围是(  )
A.(-1,0)∪(0,1)B.(-1,0)C.(0,1)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A1,A2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点,以线段A1A2为直径的圆与双曲线C的渐近线的一个交点为(1,$\sqrt{3}$),则C的方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对于双曲线C(a,b):$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),若点P(x0,y0)满足$\frac{{x}_{0}^{2}}{{a}^{2}}$-$\frac{{y}_{0}^{2}}{{b}^{2}}$<1,则称P在的C(a,b)外部;若
若点P(x0,y0)满足$\frac{{x}_{0}^{2}}{{a}^{2}}$-$\frac{{y}_{0}^{2}}{{b}^{2}}$>1,则称P在的C(a,b)内部:
(1)证明:直线3x-y+1=0上的点都在C(1,1)的外部;
(2)若点M的坐标为(0,-1),点N在C(1,1)的内部或C(1,1)上,求|$\overrightarrow{MN}$|的最小值;
(3)若C(a,b)经过点(2,1),圆x2+y2=r2(r>0)在C(a,b)内部及C(a,b)上的点构成的圆弧长等于该圆周长的一半,求b、r满足的关系式及r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正数m是2和8的等比中项,则圆锥曲线x2+$\frac{y^2}{m}$=1的焦点坐标为(  )
A.$(±\sqrt{3},0)$B.$(0,±\sqrt{3})$C.$(±\sqrt{3},0)$或$(±\sqrt{5},0)$D.$(0,±\sqrt{3})$或$(±\sqrt{5},0)$

查看答案和解析>>

同步练习册答案