已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0,且直线l与圆C交于A、B两点.
(1)若|AB|=
,求直线l的倾斜角;
(2)若点P(1,1)满足2
=
,求此时直线l的方程.
(1)
或
. (2)x-y=0或x+y-2=0.
【解析】(1)由圆C:x2+(y-1)2=5,得圆的半径r=
,
又|AB|=
,故弦心距d=
=
.
再由点到直线的距离公式可得d=
,
∴
=
,解得m=±
.
即直线l的斜率等于±
,故直线l的倾斜角等于
或
.
(2)设A(x1,mx1-m+1),B(x2,mx2-m+1),由题意2
=
可得2(1-x1,-mx1+m)=(x2-1,mx2-m),
∴2-2x1=x2-1,即2x1+x2=3.①
再把直线方程y-1=m(x-1)代入圆C:x2+(y-1)2=5,化简可得(1+m2)x2-2m2x+m2-5=0,由根与系数
关系可得x1+x2=
.②
由①②解得x1=
,故点A的坐标为(
,
).
把点A的坐标代入圆C的方程可得m2=1,即m=±1,故直线l的方程为x-y=0或x+y-2=0.
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-9圆锥曲线的综合问题(解析版) 题型:选择题
若双曲线
-
=1(a>b>0)的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成7∶5的两段,则此双曲线的离心率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-6双曲线(解析版) 题型:解答题
如图所示,双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别为左、右焦点,双曲线的左支上有一点P,∠F1PF2=
,且△PF1F2的面积为2
,双曲线的离心率为2,求该双曲线的标准方程.
![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-5椭圆(解析版) 题型:填空题
已知P为椭圆
+
=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-5椭圆(解析版) 题型:选择题
已知椭圆C:
+
=1(b>0),直线l:y=mx+1,若对任意的m∈R,直线l与椭圆C恒有公共点,则实数b的取值范围是( )
A.[1,4) B.[1,+∞)
C.[1,4)∪(4,+∞) D.(4,+∞)
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-4直线与圆、圆与圆的位置关系(解析版) 题型:填空题
在平面直角坐标系xOy中,设过原点的直线l与圆C:(x-3)2+(y-1)2=4交于M、N两点,若|MN|≥2
,则直线l的斜率k的取值范围为________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-3圆的方程(解析版) 题型:解答题
已知圆C经过点A(-2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.
(1)求圆C的方程;
(2)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-2直线的交点坐标与距离公式(解析版) 题型:填空题
已知0<k<4,直线l1:kx-2y-2k+8=0和直线l2:2x+k2y-4k2-4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-7立体几何中的向量方法(解析版) 题型:选择题
如图所示,ABCD-A1B1C1D1是棱长为6的正方体,E、F分别是棱AB、BC上的动点,且AE=BF.当A1、E、F、C1共面时,平面A1DE与平面C1DF所成二面角的余弦值为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com