精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0),且f(x)的最小正周期为π
(1)求函数f(x)的单调增区间;
(2)若f($\frac{a}{2}$-$\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,f($\frac{β}{2}$-$\frac{π}{8}$)=$\frac{2\sqrt{2}}{3}$,且α、β∈(-$\frac{π}{2},\frac{π}{2}$),求cos(α+β)的值.

分析 (1)由三角函数公式化简可得f(x)=$\sqrt{2}$sin(2ωx+$\frac{π}{4}$),由周期可得ω=1,可得函数解析式,解2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$可得单调增区间;
(2)由题意易得sinα=$\frac{1}{3}$,sinβ=$\frac{2}{3}$,由α、β范围和同角三角函数基本关系可得cosα和cosβ,代入cos(α+β)=cosαcosβ-sinαsinβ可得.

解答 解:(1)由三角函数公式化简可得:
f(x)=2sinωxcosωx+cos2ωx
=sin2ωx+cos2ωx=$\sqrt{2}$sin(2ωx+$\frac{π}{4}$),
∵f(x)的最小正周期为π,
∴$\frac{2π}{2ω}$=π,解得ω=1,
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
解2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$可得kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,
∴函数f(x)的单调增区间为[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z;
(2)∵f($\frac{a}{2}$-$\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,f($\frac{β}{2}$-$\frac{π}{8}$)=$\frac{2\sqrt{2}}{3}$,
∴$\sqrt{2}$sin(α-$\frac{π}{4}$+$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$,$\sqrt{2}$sin(β-$\frac{π}{4}$+$\frac{π}{4}$)=$\frac{2\sqrt{2}}{3}$,
∴sinα=$\frac{1}{3}$,sinβ=$\frac{2}{3}$,又α、β∈(-$\frac{π}{2},\frac{π}{2}$),
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{2\sqrt{2}}{3}$,同理cosβ=$\frac{\sqrt{5}}{3}$,
∴cos(α+β)=cosαcosβ-sinαsinβ
=$\frac{2\sqrt{2}}{3}$×$\frac{\sqrt{5}}{3}$-$\frac{1}{3}$×$\frac{2}{3}$=$\frac{2\sqrt{10}-2}{9}$

点评 本题考查三角函数恒等变换,涉及三角函数的周期性和单调性以及和差角的三角函数公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.lg[lg(lgx)]=0,则${x}^{-\frac{1}{5}}$=$\frac{1}{100}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知an=lg$\frac{100}{{2}^{n-1}}$,bn=10${\;}^{{a}_{n}}$.
(1)求证数列{bn}是等比数列;
(2)数列{an}中前多少项的和最大?并求出这个最大值;
(3)数列{an}的前n项和为负数时,最小的项数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某一歌剧院,共有25排座位,最前面一排有20个座位,每后一排比前一排多2个座位,问这歌剧院共有多少个座位?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,则输出的结果是(  )
A.61B.62C.63D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,$\overrightarrow{CA}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow{b}$,点D在线段AB上,且$\overrightarrow{AD}$=λ$\overrightarrow{AB}$,$\overrightarrow{CD}$=m$\overrightarrow{a}$+n$\overrightarrow{b}$,则$\frac{1}{λ}$-$\frac{m}{n}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知an=2×5n-n,则Sn=$\frac{{5}^{n+1}-{n}^{2}-n-5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.无论a取何值,过点P(4,6+2a)和Q(1,3a)的直线总过第一、二象限,则实数a的取值范围是($\frac{3}{5},6$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax+1-a(x≥0)}\\{f(x+2)(x<0)}\end{array}\right.$.
(Ⅰ)若a=-8,求当-6≤x≤5时,|f(x)|的最大值;
(Ⅱ)对于任意的实数a(-2≤a≤4)都有一个最大的正数M(a),使得当x∈[0,M(a)]时,|f(x)|≤3恒成立,求M(a)的最大值及相应的a.

查看答案和解析>>

同步练习册答案