分析 (1)由三角函数公式化简可得f(x)=$\sqrt{2}$sin(2ωx+$\frac{π}{4}$),由周期可得ω=1,可得函数解析式,解2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$可得单调增区间;
(2)由题意易得sinα=$\frac{1}{3}$,sinβ=$\frac{2}{3}$,由α、β范围和同角三角函数基本关系可得cosα和cosβ,代入cos(α+β)=cosαcosβ-sinαsinβ可得.
解答 解:(1)由三角函数公式化简可得:
f(x)=2sinωxcosωx+cos2ωx
=sin2ωx+cos2ωx=$\sqrt{2}$sin(2ωx+$\frac{π}{4}$),
∵f(x)的最小正周期为π,
∴$\frac{2π}{2ω}$=π,解得ω=1,
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
解2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$可得kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,
∴函数f(x)的单调增区间为[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z;
(2)∵f($\frac{a}{2}$-$\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,f($\frac{β}{2}$-$\frac{π}{8}$)=$\frac{2\sqrt{2}}{3}$,
∴$\sqrt{2}$sin(α-$\frac{π}{4}$+$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$,$\sqrt{2}$sin(β-$\frac{π}{4}$+$\frac{π}{4}$)=$\frac{2\sqrt{2}}{3}$,
∴sinα=$\frac{1}{3}$,sinβ=$\frac{2}{3}$,又α、β∈(-$\frac{π}{2},\frac{π}{2}$),
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{2\sqrt{2}}{3}$,同理cosβ=$\frac{\sqrt{5}}{3}$,
∴cos(α+β)=cosαcosβ-sinαsinβ
=$\frac{2\sqrt{2}}{3}$×$\frac{\sqrt{5}}{3}$-$\frac{1}{3}$×$\frac{2}{3}$=$\frac{2\sqrt{10}-2}{9}$
点评 本题考查三角函数恒等变换,涉及三角函数的周期性和单调性以及和差角的三角函数公式,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com