精英家教网 > 高中数学 > 题目详情
13.设a∈R,函数f(x)=ex+ae-x,其导函数f'(x)是奇函数.若曲线y=f(x)的一条切线的斜率为$\frac{3}{2}$,则切点的坐标为$(ln2,\frac{5}{2})$.

分析 利用导函数的解析式结合奇函数的性质首先求得实数a的值,然后求得切点横坐标满足的条件即可求得切点坐标.

解答 解:对f(x)=ex+ae-x求导得:f′(x)=ex-ae-x
又f′(x)是奇函数,故f′(0)=1-a=0,解得a=1,
故有f′(x)=ex-e-x,设切点为(x0,y0),
则$f′({x}_{0})={e}^{{x}_{0}}-{e}^{-{x}_{0}}=\frac{3}{2}$,
得${e}^{{x}_{0}}=2$ 或${e}^{{x}_{0}}=-\frac{1}{2}$ (舍去),
得x0=ln2.
∴切点的坐标为 $(ln2,\frac{5}{2})$.
故答案为:$(ln2,\frac{5}{2})$.

点评 本题考查奇函数的性质,导函数研究函数的切线方程等,重点考查学生对基础概念的理解和计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.当n是正整数时,比较并证明n2与2n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,AB是圆的直径,PA垂直于圆所在的平面,C是圆上的一点,
E,F分别为PA,PC的中点.
(1)求证:EF∥平面ABC
(2)求证:BC⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xoy中,设复数z满足|z-1|=1.
(Ⅰ)求复数z所对应的点(x,y)的轨迹方程C;
(Ⅱ)以原点为极点,以x轴正半轴为极轴建立极坐标系,把(Ⅰ)中的曲线C化为极坐标方程,并判断其与曲线$ρcosθ+\sqrt{3}ρsinθ-3=0$的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列不等式中,正确的个数为(  )
①若x>0且x≠1,则$lnx+\frac{1}{lnx}≥2$;
②a2+b2+2≥2a+2b;
③${x^2}+\frac{1}{{{x^2}+1}}≥1$;
④若a>0,b>0,则$\frac{a^2}{b}+\frac{b^2}{a}≥a+b$;
⑤任意的x>0,都有ex>x+1.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a,b∈R,使|a|+|b|>4成立的一个充分不必要条件是(  )
A.|a+b|≥4B.|a|≥4C.|a|≥2且|b|≥2D.b<-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2x,$g(x)=\frac{1}{{{2^{|x|}}}}+2$.
(1)求函数g(x)的值域;
(2)求满足方程f(x)-g(x)=0的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$则g$[g(\frac{1}{2})]$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.平面直角坐标系中,A,B分别为x轴和y轴上的动点,若以AB为直径的圆C与直线x+$\sqrt{3}$y-4$\sqrt{3}$=0相切,则圆C面积的最小值为(  )
A.$\frac{3}{4}$πB.πC.D.

查看答案和解析>>

同步练习册答案