精英家教网 > 高中数学 > 题目详情
6.己知i为虚数单位,则复数$\frac{10}{3+i}$=3-i.

分析 直接由复数代数形式的乘除运算得答案.

解答 解:$\frac{10}{3+i}$=$\frac{10(3-i)}{(3+i)(3-i)}=\frac{10(3-i)}{10}=3-i$.
故答案为:3-i.

点评 本题考查了复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数y=x2-ax+2在(-∞,1)上递减,则a的取值范围是{a|a≥2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示的三个直角三角形是一个体积为20cm3的几何体的三视图,则h=(  )cm.
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.直线ax+8y-2=0与x+2ay-1=0相交则a的范围为{a|a∈R,a≠±2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若角α,β满足-$\frac{π}{2}$<α<β<π,求2α+β和α-β的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.计算:$\frac{1-2si{n}^{2}α}{2co{s}^{2}α-1}$=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.平行四边形ABCD中,点P在边AB上(不含端点),$\overrightarrow{AP}=λ\overrightarrow{AB}$.若|$\overrightarrow{AP}$|=2,|$\overrightarrow{AD}$|=1,∠BAD=60°且$\overrightarrow{AP}•\overrightarrow{CP}$=-3.则λ=(  )
A.1B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,P1(x1,y1)、P2(x2,y2),…Pn(xn,yn)在函数y=$\frac{4}{x}$(x>0)的图象上,△P1OA1,△P2A1A2,△P3A2A3…△PnAn-1An…都是等腰直角三角形,斜边OA1,A1A2…An-1An,都在x轴上,则y1+y2+…y10=$2\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{1}{3}a{x^3}+({a-2})x+c$的图象如图所示.
(1)求函数y=f(x)的解析式;
(2)已知f′(x)是函数f(x)的导函数.?若数列{an}的通项${a_n}=\frac{1}{{f'({n+1})}}$,求其前n项和Sn;?若$g(x)=\frac{kf'(x)}{x}-2lnx$在其定义域内为增函数,求实数k的取值范围.

查看答案和解析>>

同步练习册答案