精英家教网 > 高中数学 > 题目详情
14.在如图所示的多面体ABCDE中,四边形ABCF为平行四边形,F为DE的中点,△BCE为等腰直角三角形,BE为斜边,△BDE为正三角形,CD=CE=2.
(1)证明:CD⊥BE;
(2)求四面体ABDE的体积.

分析 (1)由△BCE为等腰直角三角形,BE为斜边,可得CB=CE=2,BE=2$\sqrt{2}$,从而求得BD=2$\sqrt{2}$,然后利用勾股定理可得CD⊥BC,同理,可得CD⊥CE.再由线面垂直的判定可得CD⊥平面BCE,进一步得到CD⊥BE;
(2)又(1)可得BC⊥平面DCE,由四边形ABCF为平行四边形,可得AF⊥平面DCE,得到AF⊥DE,再由CD=CE,F为DE的中点,得CF⊥DE,进一步得到DE⊥平面ABCF.然后利用VA-BDE=VD-ABF+VE-ABF=$\frac{1}{3}{S}_{△ABF}•DE$求得四面体ABDE的体积.

解答 (1)证明:∵△BCE为等腰直角三角形,BE为斜边,∴CB=CE=2,BE=2$\sqrt{2}$.
∵△BDE为正三角形,∴BD=2$\sqrt{2}$,
在三角形BDC中,BC2+CD2=BD2,∴CD⊥BC,
同理,可得CD⊥CE.
∵BC∩CE=C,∴CD⊥平面BCE,
又BE?平面BCE,∴CD⊥BE;
(2)又(1)可得BC⊥平面DCE,
∵四边形ABCF为平行四边形,∴AF⊥平面DCE,则AF⊥DE,
又CD=CE,F为DE的中点,∴CF⊥DE,
又CF∩AF=F,∴DE⊥平面ABCF.
连接BF,则VA-BDE=VD-ABF+VE-ABF=$\frac{1}{3}{S}_{△ABF}•DE$
=$\frac{1}{3}•\frac{1}{2}•2•\sqrt{2}•2\sqrt{2}=\frac{4}{3}$.
∴四面体ABDE的体积为$\frac{4}{3}$.

点评 本题考查线面垂直的判定和性质,考查了空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足a1=6,an+1-an=2n,记cn=$\frac{{a}_{n}}{n}$,且存在正整数M,使得对一切n∈N*,cn≥M恒成立,则M最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知首项为$\frac{3}{2}$的等比数列{an}的前n项和为Sn,n∈N*,且-2S2,S3,4S4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对于数列$\left\{{A_n^{\;}}\right\}$,若存在一个区间M,均有Ai∈M,(i=1,2,3…),则称M为数列$\left\{{A_n^{\;}}\right\}$的“容值区间”,设${b_n}={S_n}+\frac{1}{S_n}$,试求数列{bn}的“容值区间”长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,AB=BC=3,∠BAC=30°,CD是AB边上的高,则$\overrightarrow{CD}•\overrightarrow{CB}$=(  )
A.$-\frac{9}{4}$B.$\frac{9}{4}$C.$\frac{27}{4}$D.$-\frac{27}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.抛物线y2=2px(p>0)的一条弦AB过焦点F,且|AF|=2,|BF|=3,则抛物线的方程为y2=$\frac{24}{5}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1、F2,离心率为$\frac{1}{2}$,以原点O为圆心,椭圆C的短半轴长为半径的圆与直线x+$\sqrt{2}$y-3=0相切.
(1)求椭圆C的标准方程;
(2)动直线l;y=kx+m与椭圆C相切,分别过点F1、F2作直线垂直于l,垂足分别为D、E,求|F1D|+|F2E|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列四个函数中,既是奇函数又在定义域上单调递减的是(  )
A.y=2-|x|B.y=tanxC.y=-x3D.$y={log_{\frac{1}{5}}}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法正确的是(  )
A.若x,y∈R,且$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,则$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$
B.设命题p:?x>0,x2>2x,则¬p:?x0≤0,x02≤2${\;}^{{x}_{0}}$
C.△ABC中,A>B是sinA>sinB的充分必要条件
D.命题“若a=-1,则f(x)=ax2+2x-1只有一个零点”的逆命题为真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{a}$,$\overrightarrow{b}$是两个向量,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,若在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,D为BC中点,则AD的长为(  )
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案