精英家教网 > 高中数学 > 题目详情
12.已知集合A={x∈Z||x|<4},B={x|x-1≥0},则A∩B等于(  )
A.(1,4)B.[1,4)C.{1,2,3}D.{2,3,4}

分析 求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.

解答 解:∵A={x∈Z||x|<4}={x∈Z|-4<x<4}={-3,-2,-1,0,1,2,3},B={x|x-1≥0}={x|x≥1},
∴A∩B={1,2,3},
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,在多面体EF-ABCD中,四边形ABCD,ABEF均为直角梯形,∠ABE=∠ABC=$\frac{π}{2}$,四边形DCEF为平行四边形,平面DCEF⊥平面ABCD.
(Ⅰ)求证:DF⊥平面ABCD;
(Ⅱ)若BC=CD=CE=$\frac{1}{2}$AB,求直线BF与平面ADF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在锐二面角α-AB-β的面α内一点P到β的距离为P到棱AB的距离的一半,求此二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.cos(-600°)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,BC=1,CC1=2,BC1=$\sqrt{3}$.
(1)求证:BC1⊥平面ABC;
(2)当二面角A-CC1-B为$\frac{π}{3}$时,求三棱柱ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={y|y=lgx,0<x<1},N={y|y=($\frac{1}{10}$)x,x>1},则M∩N=(  )
A.{y|y<0}B.{y|y<$\frac{1}{10}$}C.{y|0<y<$\frac{1}{10}$}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,AB=AD=AA1=2.底面ABCD为直角梯形,其中AD∥BC,∠BAD=90°,∠BCD=45°.
(])求三棱锥C-B1C1D1的体积;
(2)求证:B1D1⊥平面CDD1C1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.l与抛物线y2=2px相交于A、B两点,O为原点,如果0A垂直于0B,则l一定过(  )
A.($\frac{p}{2}$,0)B.(p,0)C.(2p,0)D.(3p,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为45°,对于任意实数t,|$\overrightarrow{b}$+t$\overrightarrow{a}$|的最小值$\sqrt{10}$,则|$\overrightarrow{b}$|=2$\sqrt{5}$.

查看答案和解析>>

同步练习册答案