精英家教网 > 高中数学 > 题目详情
与双曲线x2-y2=2有共同的焦点,且经过点M(-3,0)的椭圆的标准方程为
 
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出双曲线的焦点,即为椭圆的焦点,再由椭圆的定义,即可求得a,再由a,b,c的关系,即可得到椭圆方程.
解答: 解:双曲线x2-y2=2的焦点为F1(-
2
,0),F2
2
,0),
则由椭圆的定义,可得|MF1|+|MF2|=3-
2
+3+
2
=6,
即有2a=6,即a=3,又c=
2
,则b2=a2-c2=5,
则椭圆方程为:
x2
9
+
y2
5
=1

故答案为:
x2
9
+
y2
5
=1
点评:本题考查椭圆的定义和方程、性质,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的个数是(  )
①正切函数在定义域上单调递增;
②函数f(x)在区间(a,b)上满足f(a)f(b)<0,则函数f(x)在(a,b)上有零点;
f(x)=log2(x+
x2+1
)
的图象关于原点对称;
④若一个函数是周期函数,那么它一定有最小正周期.
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

光明中学准备组织学生去国家体育场“鸟巢”参观.参观期间,校车每天至少要运送544名学生.该中学后勤集团有7辆小巴、4辆大巴,其中小巴能载16人、大巴能载32人. 已知每辆客车每天往返次数小巴为5次、大巴为3次,每次运输成本小巴为48元,大巴为60元.请问每天应派出小巴、大巴各多少辆,能使总费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px的焦点与椭圆x2+3y2=6的右焦点重合,则p的值为(  )
A、-2B、2C、-4D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

5名同学去听同时举行的3个课外知识讲座,每名同学可以自由选择听其中的1个讲座,不同的选择方法数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点.
(1)求AB边所在的直线方程;
(2)求BC边上的垂直平分线所在直线方程;
(3)求以线段AM为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

使函数f(x)=sin(2x+θ)+
3
cos(2x+θ)的图象关于原点对称,且满足?x1,x2∈[0,
π
4
],恒有(x1-x2)[f(x1)-f(x2)]<0的θ的一个值是(  )
A、
π
3
B、
3
C、
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设i是虚数单位,复数
1+ai
i
为纯虚数,则实数a为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2+ax+a=0有实数解;命题q:-1<a≤2.
(1)若¬p是真命题,求实数a的取值范围;
(2)若(¬p)∧q是真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案