精英家教网 > 高中数学 > 题目详情
5.已知扇形AOB的周长是6,中心角是2弧度,则该扇形的面积为$\frac{9}{4}$.

分析 由已知中,扇形AOB的周长是6cm,该扇形的中心角是2弧度,我们可设计算出弧长与半径的关系,进而求出弧长和半径,代入扇形面积公式,即可得到答案

解答 解:∵扇形圆心角2弧度,可得扇形周长和面积为整个圆的$\frac{2}{2π}$.
弧长l=2πr•$\frac{2}{2π}$=2r,
故扇形周长C=l+2r=4r=6,
∴r=$\frac{3}{2}$,
扇形面积S=π•r2•$\frac{2}{2π}$=$\frac{9}{4}$.
故答案为:$\frac{9}{4}$.

点评 本题考查的知识点是扇形面积公式,弧长公式,其中根据已知条件,求出扇形的弧长及半径,是解答本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数f(x)=2kx,g(x)=log3x,若f(-1)=g(9),则实数k的值是(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列{an}和等比数列{bn},其中{an}的公差不为0.设Sn是数列{an}的前n项和.若a1,a2,a5是数列{bn}的前3项,且S4=16.
(1)求数列{an}和{bn}的通项公式;
(2)若数列{$\frac{4{S}_{n}-1}{{a}_{n}+t}$}为等差数列,求实数t;
(3)构造数列a1,b1,a2,b1,b2,a3,b1,b2,b3,…,ak,b1,b2,…,bk,…,若该数列前n项和Tn=1821,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在直角坐标系xOy中,已知点A(3,0)和点B(-4,3).若点M在∠AOB的平分线上且$|{\overrightarrow{OM}}|=\sqrt{10}$,则$\overrightarrow{OM}$=(1,3).(用坐标表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线$\left\{\begin{array}{l}x=5+tsin{30°}\\ y=-tcos{30°}\end{array}\right.(t为参数)$的倾斜角是120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知y∈R,复数z=(2+2y)+(y-1)i,当y为何值时:
(1)z∈R?
(2)z是纯虚数?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.命题:(1)三角形、梯形一定是平面图形;
(2)若四边形的两条对角线相交于一点,则该四边形是平面图形;
(3)三条平行线最多可确定三个平面;
(4)平面α和β相交,它们只有有限个公共点;
(5)若A,B,C,D四个点既在平面α内,又在平面β内,则这两平面重合.
其中正确命题的序号是(1),(2),(3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知角A,B为锐角,且cosA=$\frac{3}{5}$,cosB=$\frac{5}{13}$,求sin(A+B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区--龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)
年龄频数频率
[0,10)100.155
[10,20)
[20,30)250.251213
[30,40)200.21010
[40,50)100.164
[50,60)100.137
[60,70)50.0514
[70,80)30.0312
[80,90)20.0202
合计1001.004555
(1)完成表格一中的空位①-④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.
(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?
 50岁以上50岁以下合计
男生   
女生   
合计   
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案