精英家教网 > 高中数学 > 题目详情
18.已知实数x,y满足$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤8}\end{array}\right.$,则z=x+y的最小值为2.

分析 画出满足条件的平面区域,求出角点的坐标,结合函数图象求出z的最小值即可.

解答 解:画出满足条件的平面区域,如图示:,
由$\left\{\begin{array}{l}{y=1}\\{y=2x-1}\end{array}\right.$,解得B(1,1),
由z=x+y得:y=-x+z,
显然直线过B时z最小,
z的最小值是2,
故答案为:2.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知某工程在很大程度上受当地年降水量的影响,施工期间的年降水量X(单位:mm)对工期延误天数Y的影响及相应的概率P如表所示:
降水量XX<100100≤X<200200≤X<300X≥300
工期延误天数Y051530
概率P0.40.20.10.3
在降水量X至少是100的条件下,工期延误不超过15天的概率为(  )
A.0.1B.0.3C.0.42D.0.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.己知集合A={x|2x≥1},B={x|x2-3x+2≥0},则A∩B=(  )
A.{x|x≤0}B.{x|1≤x≤2}C.{x|0≤x≤1或x≥2}D.{x|0≤x<或x≥2}

查看答案和解析>>

科目:高中数学 来源:2016-2017学年山西忻州一中高一上学期新生摸底数学试卷(解析版) 题型:解答题

如图,抛物线轴交于两点,直线轴交于点,与轴交于点,点轴上方的抛物线上一动点,过点轴于点,交直线于点.设点的横坐标为

(1)求抛物线的解析式;

(2)若,求的值;

(3)若点是点关于直线的对称点、是否存在点,使点落在轴上?若存在,请直接写出相应的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若x,2x+1,4x+5是等比数列{an}的前三项,则an等于(  )
A.2n-1B.3n-1C.2nD.3n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.正三角形ABC的边长为1,向量$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且0≤x,y≤1,$\frac{1}{2}$≤x+y≤1,则动点P的轨迹所形成的面积为$\frac{3\sqrt{3}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知α,β是空间中两个不同的平面,m为平面β内的一条直线,则“α⊥β”是“m⊥α”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知A,B是椭圆C:$\frac{{x}^{2}}{2n}$+$\frac{{y}^{2}}{n}$=1(n>0)的左、右顶点,动点M满足MB⊥AB,连接AM交椭圆于点P,记直线OM,PB的斜率分别为k1,k2,则k1•k2=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=2,向量$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$夹角为$\frac{2π}{3}$,则$\overrightarrow{a}$$•\overrightarrow{b}$的取值范围是$[2-\frac{4\sqrt{3}}{3},2+\frac{4\sqrt{3}}{3}]$.

查看答案和解析>>

同步练习册答案