精英家教网 > 高中数学 > 题目详情
6.已知A,B是椭圆C:$\frac{{x}^{2}}{2n}$+$\frac{{y}^{2}}{n}$=1(n>0)的左、右顶点,动点M满足MB⊥AB,连接AM交椭圆于点P,记直线OM,PB的斜率分别为k1,k2,则k1•k2=-1.

分析 由题意可得A(-$\sqrt{2n}$,0),B($\sqrt{2n}$,0),M($\sqrt{2n}$,t),直线AM的方程为y=$\frac{t}{2\sqrt{2n}}$(x+$\sqrt{2n}$),代入椭圆方程,运用韦达定理可得P的坐标,再由直线的斜率公式,化简整理可得所求之积.

解答 解:由题意可得A(-$\sqrt{2n}$,0),B($\sqrt{2n}$,0),M($\sqrt{2n}$,t),
直线AM的方程为y=$\frac{t}{2\sqrt{2n}}$(x+$\sqrt{2n}$),
代入椭圆方程x2+2y2=2n,可得(1+$\frac{{t}^{2}}{4n}$)x2+$\frac{{t}^{2}}{\sqrt{2n}}$x+$\frac{{t}^{2}-4n}{2}$=0,
由-$\sqrt{2n}$•xP=$\frac{2n({t}^{2}-4n)}{{t}^{2}+4n}$,
解得xP=$\frac{\sqrt{2n}(4n-{t}^{2})}{4n+{t}^{2}}$,yP=$\frac{4nt}{4n+{t}^{2}}$,
即有k1k2=$\frac{t}{\sqrt{2n}}$•$\frac{{y}_{P}}{{x}_{P}-\sqrt{2n}}$=$\frac{t}{\sqrt{2n}}$•$\frac{4nt}{-2\sqrt{2n}{t}^{2}}$
=$\frac{t}{\sqrt{2n}}$•$\frac{\sqrt{2n}}{-t}$=-1.
故答案为:-1.

点评 本题考查椭圆的方程和性质,主要考查直线方程和椭圆方程联立,运用韦达定理,同时考查直线的斜率公式,化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|y=x2+1},B={y|y=x2+1},则下列关系正确的是(  )
A.A∩B=∅B.A∩B=AC.A=BD.A∩B=B

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知实数x,y满足$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤8}\end{array}\right.$,则z=x+y的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知纸片Rt△ABC中,AB=AC=1,过顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC与桌面接触)使AD垂直于桌面,且二面角B-AD-C为直二面角.
(1)求VD-ABC
(2)求四面体D-ABC的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,AB是半圆O的直径,C是半圆O上除了A、B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=BE,AB=4,tan∠EAB=$\frac{1}{4}$
(1)证明:平面ADE⊥平面ACD
(2)当AC=BC时,求二面角D-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.求函数y=sinx的图象,x∈[0,π]与函数y=cosx的图象,x∈[0,π]图象围成的图形面积为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个四棱锥的三视图如图所示,则该四棱锥的体积为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.有下列三种说法:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“p∨q为真”是“¬p为假”的必要不充分条件;
③在区间[0,π]上随机取一个数x,则事件“sinx≥$\frac{1}{2}$”发生的概率是$\frac{5}{6}$.
其中正确说法的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知A,B,O三点不共线,若|$\overrightarrow{AB}$|=|$\overrightarrow{OA}$+$\overrightarrow{OB}$|,则向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为90°.

查看答案和解析>>

同步练习册答案