精英家教网 > 高中数学 > 题目详情
(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)
如题(21)图,M(-2,0)和N(2,0)是平面上的两点,动点P满足:

(Ⅰ)求点P的轨迹方程;
(Ⅱ)设d为点P到直线l:的距离,若,求的值.
(Ⅰ)
(Ⅱ)
本小题主要考查双曲线的第一定义、第二定义及转化与化归的数学思想,同时考查了学生的运算能力。
(I)由双曲线的定义,点P的轨迹是以MN为焦点,实轴长2a=2的双曲线.
因此半焦距c=2,实半轴a=1,从而虚半轴b=,
所以双曲线的方程为
(II)解法一:
由(I)及答(21)图,易知|PN|1,因|PM|=2|PN|2,      ①
知|PM|>|PN|,故P为双曲线右支上的点,所以|PM|="|PN|+2.    " ②
将②代入①,得2||PN|2-|PN|-2=0,解得|PN|=,所以
|PN|=.
因为双曲线的离心率e==2,直线l:x=是双曲线的右准线,故=e=2,
所以d=|PN|,因此

解法二:

Px,y,因|PN|1知
|PM|=2|PN|22|PN|>|PN|,
故P在双曲线右支上,所以x1.
由双曲线方程有y2=3x2-3.
因此

从而由|PM|=2|PN|2
2x+1=2(4x2-4x+1),即8x2-10x+1=0.
所以x=(舍去).
有|PM|=2x+1=
d=x-=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
已知椭圆的焦点是,,点在椭圆上且满足.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线与椭圆的交点为.
(i)求使 的面积为的点的个数;
(ii)设为椭圆上任一点,为坐标原点,,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知向量),,动点的轨迹为T.
(1)求轨迹T的方程,并说明该方程表示的曲线的形状;
(2)当时,已知,试探究是否存在这样的点是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,通径长为1,且焦点与短轴两端点构成等边三角形,(1)求椭圆的方程;(2)过点Q(-1,0)的直线l交椭圆于A,B两点,交直线x=-4于点E,点Q分 所成比为λ,点E分所成比为μ,求证λ+μ为定值,并计算出该定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A,动点在双曲线上运动,且,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的一组斜率为2的平行弦中点的轨迹是(     )
A.椭圆B.圆C.双曲线D.射线(不含端点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心在原点,其左焦点与抛物线的焦点重合,过的直线与椭圆交于AB两点,与抛物线交于CD两点.当直线x轴垂直时,
(Ⅰ)求椭圆的方程;
(II)求过点O、,并且与椭圆的左准线相切的圆的方程;
(Ⅲ)求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的两个焦点为,点在椭圆上,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过圆的圆心,交椭圆两点,且关于点对称,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知有公共焦点的椭圆与双曲线中心在原点,焦点在轴上,左右焦点分别为,且它们在第一象限的交点为是以为底边的等要三角形,若,双曲线的离心率的取值范围为,则该椭圆的离心率的取值范围为       

查看答案和解析>>

同步练习册答案