分析 (I)由nan+1=(n+1)an+n(n+1)知$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=1,从而证明数列{$\frac{{a}_{n}}{n}$}是以1为首项,1为公差的等差数列;
(Ⅱ)由(I)可得an=n2,从而分类讨论以求Tn.
解答 解:(I)证明:∵nan+1=(n+1)an+n(n+1),
∴$\frac{{a}_{n+1}}{n+1}$=$\frac{{a}_{n}}{n}$+1,
∴$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=1,
又∵$\frac{{a}_{1}}{1}$=1;
∴数列{$\frac{{a}_{n}}{n}$}是以1为首项,1为公差的等差数列;
(Ⅱ)由(I)知,$\frac{{a}_{n}}{n}$=1+n-1=n,
故an=n2,
当n为奇数时,
Tn=a1-a2+a3-a4+…+(-1)n+1•an
=(12-22)+(32-42)+(52-62)+…+((n-2)2-(n-1)2)+n2
=-3-7-11-…-2n+3+n2
=-$\frac{n(n-1)}{2}$+n2=-$\frac{n(n+1)}{2}$;
当n为偶数时,
Tn=a1-a2+a3-a4+…+(-1)n+1•an
=(12-22)+(32-42)+(52-62)+…+((n-1)2-n2)
=-3-7-11-…-2n+1
=-$\frac{n(n-1)}{2}$+n2=$\frac{n(n+1)}{2}$;
综上所述,Tn=(-1)n$\frac{n(n+1)}{2}$.
点评 本题考查了数列的性质的判断与应用,同时考查了整体思想与分类讨论的思想应用及构造法的应用.
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 20 | C. | 30 | D. | 40 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com