分析 (1)只需证明BD⊥平面PAC即可;
(2)连结PE,根据中位线定理即可得出当G为CE中点时有FG∥PE,故FG∥平面PBD.
解答 (1)证明:∵PA⊥面ABCD,BD?平面ABCD,
∴PA⊥BD,
∵四边形ABCD是正方形,∴AC⊥BD.
又∵PA?平面PAC,AC?平面PAC,PA∩AC=A,
∴BD⊥平面APC,∵FG?平面PAC,
∴BD⊥FG.
(2)解:当G为EC中点,即$AG=\frac{3}{4}AC$时,FG∥平面PBD.
理由如下:连结PE,由F为PC中点,G为EC中点,知FG∥PE
而FG?平面PBD,PB?平面PBD,故FG∥平面PBD.
点评 本题考查了线面平行,线面垂直的判断,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k≥$\frac{1}{2}$ | B. | k≤-2 | C. | k≥$\frac{1}{2}$或k≤-2 | D. | -2≤k≤$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com