精英家教网 > 高中数学 > 题目详情
2.已知函数$f(x)=1+\frac{a}{{{2^x}+1}}({a∈R})$.
(Ⅰ)是否存在实数a的值,使f(x)的图象关于原点对称?若存在,求出a的值;若不存在,说明理由;
(Ⅱ)若a=1,t(2x+1)f(x)>2x-2对x∈R恒成立,求实数f(x)的取值范围.

分析 (Ⅰ)法一:根据f(0)=0,求出a的值,
法二:根据函数的奇偶性进行判断;
(Ⅱ)求出f(x)的表达式,问题转化为t>$\frac{{2}^{x}-2}{{2}^{x}+2}$对x∈R恒成立,令g(x)=$\frac{{2}^{x}-2}{{2}^{x}+2}$,g(x)的上线,从而求出t的范围即可.

解答 解:(Ⅰ)定义域为R,又知函数为R上的奇函数,则f(0)=0⇒a=-2,
下面证明a=-2时:$f(x)=1-\frac{2}{{{2^x}+1}}$是奇函数,
∵$f(-x)=1-\frac{2}{{{2^{-x}}+1}}=1-\frac{{2•{2^x}}}{{1+{2^x}}}=\frac{{1-{2^x}}}{{1+{2^x}}}=\frac{{-({1+{2^x}})+2}}{{1+{2^x}}}=-1+\frac{2}{{1+{2^x}}}=-f(x)$,
对定义域R上的每一个x都成立,
∴f(x)为R上的奇函数,
∴存在实数a=-2,使函数f(x)为奇函数;
另解:定义域为R,又知函数为R上的奇函数,
则f(-x)=-f(x)对f(x)定义域R上的每一个x都成立.
∴$1+\frac{a}{{{2^{-x}}+1}}=-1-\frac{a}{{{2^x}+1}}$
∴$-2=\frac{a}{{{2^{-x}}+1}}+\frac{a}{{{2^x}+1}}$=$\frac{{a•{2^x}}}{{({{2^{-x}}+1})•{2^x}}}+\frac{a}{{{2^x}+1}}$=$\frac{{a•{2^x}}}{{1+{2^x}}}+\frac{a}{{{2^x}+1}}$=$\frac{{a(1+{2^x})}}{{1+{2^x}}}$=a,
∴a=-2,
∴存在实数a=-2,使函数f(x)为奇函数.
(Ⅱ)若a=1,f(x)=1+$\frac{1}{{2}^{x}+1}$,
t(2x+1)f(x)>2x-2对x∈R恒成立,
即t(2x+1)(1+$\frac{1}{{2}^{x}+1}$)>2x-2对x∈R恒成立,
即t>$\frac{{2}^{x}-2}{{2}^{x}+2}$对x∈R恒成立,
令g(x)=$\frac{{2}^{x}-2}{{2}^{x}+2}$=$\frac{1-\frac{2}{{2}^{x}}}{1+\frac{2}{{2}^{x}}}$<1,
∴t≥1.

点评 本题考查了函数画出了问题,考查函数的奇偶性以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.求由方程ex+y-sinxy=3确定的函数y对x的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某班共有15人参加数学和物理课外兴趣小组,其中只参加数学兴趣小组的有5人,两个小组都参加的有4人,则只参加物理兴趣小组的有6人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知双曲线实轴长为6,一条渐近线方程为4x-3y=0.过双曲线的右焦点F作倾斜角为$\frac{π}{4}$的直线交双曲线于A、B两点
(1)求双曲线的方程;
(2)求线段AB的中点C到焦点F的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)求与椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$有相同的焦点,且经过点(4,3)的椭圆的标准方程.
(2)求与双曲线$\frac{x^2}{4}-\frac{y^2}{9}=1$有相同的渐近线,且焦距为$2\sqrt{13}$的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{x^2}{4}-\frac{y^2}{3}=1$的左右焦点分别为F1,F2,O为坐标原点,P为双曲线右支上一点,△F1PF2的内切圆的圆心为Q,过F2作PQ的垂线,垂足为B,则OB的长度为(  )
A.$\sqrt{7}$B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)的右焦点F,且斜率为2的直线l与双曲线的相交于点A,B,若弦AB的中点横坐标取值范围为(2c,4c),则该双曲线的离心率的取值范围是(  )
A.(3,4)B.(2,3)C.$(\sqrt{3},4)$D.$(\sqrt{3},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,正三棱柱ABC-A1B1C1中,AB=4,AA1=6.若E,F分别是棱BB1,CC1上的点,则三棱锥A-A1EF的体积是8$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.A${\;}_{2n}^{n+3}$-A${\;}_{4}^{n+1}$(n∈N*)的值为696.

查看答案和解析>>

同步练习册答案