精英家教网 > 高中数学 > 题目详情
7.以正方体的顶点为顶点的四棱锥的个数为48.

分析 棱锥共有5个顶点,其中有4个顶点共面,另一个不在这个面内.须先在8个顶点中找到4点共面的情况,在找第5个顶点,即可数能构成多少个四棱锥.

解答 解:要构成四棱锥,须有4个点共面.
4点共面时,这4个点可以在正方体的表面的4个顶点,
也可以是对角面的4个顶点,共6+6=12种情况,每一种情况都可构成4个四棱锥
∴一共可构成48个四棱锥
故答案为:48.

点评 本题考察棱锥的结构特点,要求有比较好的空间想象力和读图识图能力,属简单题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),(x≤1)}\\{2|x-5|-2,(3≤x≤7)}\end{array}\right.$(a>0且a≠1)的图象上关于直线x=1对称的点有且仅有一对,则实数a的取值范围为$[{\sqrt{3},\sqrt{7}})∪\left\{{\frac{{\sqrt{5}}}{5}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB>1,点E在棱AB上移动,小蚂蚁从点A沿长方体的表面爬到点C1,所爬的最短路程为2$\sqrt{2}$.则该长方体外接球的表面积为6π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若ξ~B(n,p)且E(ξ)=$\frac{4}{3}$,D(ξ)=$\frac{8}{9}$,则P(ξ=1)的值为$\frac{32}{81}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在△ABC中,角A,B,C所对的边分别为a,b,c,且2acosC-2b=c.
(1)求角A的大小;
(2)若AD是∠BAC的角平分线,$AB=4\sqrt{3},AC=2\sqrt{3}$,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数f(x),若对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1),则称函数f(x)为“D函数”.给出以下四个函数:①f(x)=ex+x;②f(x)=-x3-2x;③f(x)=e-x;④f(x)=$\left\{\begin{array}{l}{ln|x|,x≠0}\\{0,x=0}\end{array}\right.$,其中“D函数”的序号为(  )
A.①②B.①③C.②③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若正方体的外接球的表面积为6π,则该正方体的表面积为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(x)=|x-1|+|x+1|.
(1)求f(x)≤2x的解集;
(2)若不等式f(x)≥$\frac{{|{2a+1}|-|{a-1}|}}{|a|}$对任意实数a≠0恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示为函数f(x)=2sin(ωx+φ)(其中ω>0,|φ|<π)的部分图象,则(  )
A.ω=$\frac{13}{5}$,φ=$\frac{5π}{6}$B.ω=$\frac{11}{5}$,φ=$\frac{π}{6}$C.ω=$\frac{7}{5}$,φ=$\frac{5π}{6}$D.ω=$\frac{23}{5}$,φ=$\frac{π}{6}$

查看答案和解析>>

同步练习册答案