精英家教网 > 高中数学 > 题目详情
18.阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n后,输出的S=15,那么n的值为(  )
A.3B.4C.5D.6

分析 由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:第一次执行循环体后,S=1,k=2,不满足退出循环的条件;
再次执行循环体后,S=3,k=3,不满足退出循环的条件;
再次执行循环体后,S=7,k=4,不满足退出循环的条件;
再次执行循环体后,S=15,k=5,满足退出循环的条件;
故退出循环的条件应为k>4?,
故n值为4,
故选:B

点评 本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.将编号为1、2、3、4的四个小球任意地放入A、B、C、D四个小盒中,每个盒中放球的个数不受限制,恰好有一个盒子是空的概率为(  )
A.$\frac{9}{16}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{7}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2+$\frac{1}{x}$,其中a为常数
(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;
(2)若h(x)=f(x)-x-$\frac{1}{x}$>0在[1,2]上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在数列{an}中,a1=0,an+1=$\frac{{1+{a_n}}}{{3-{a_n}}}({n∈{N^*}})$.
(Ⅰ)求a2、a3、a4、a5的值,由此猜想数列{an}的通项公式;
(Ⅱ)请用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,一物体在水平面内的三个力F1、F2、F3的作用下保持平衡,如果F1=5N,F2=7N,∠α=120°,则F3=8N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=61
(1)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)求向量$\overrightarrow{a}$+$\overrightarrow{b}$在向量$\overrightarrow{b}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.先将函数y=sin2x的图象向右平移$\frac{π}{3}$个单位长度,再作所得的图象关于y轴的对称图形,则最后函数图象的解析式为(  )
A.$y=sin(-2x-\frac{2π}{3})$B.$y=sin(-2x+\frac{2π}{3})$C.$y=sin(-2x-\frac{π}{3})$D.$y=sin(-2x+\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若α∈(0,π),且角α的终边与角5α的终边相同,则α=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$tan(α-\frac{π}{4})=2$,
(1)求tanα;
(2)求$\frac{sin(π-α)+cos(π+α)}{{sin(\frac{π}{2}-α)-2cos(\frac{3π}{2}+α)}}$的值.

查看答案和解析>>

同步练习册答案