精英家教网 > 高中数学 > 题目详情
14.直线 $\sqrt{3}x+3y+2=0$的倾斜角为(  )
A.$\frac{π}{3}$B.$\frac{5π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{4}$

分析 先求出直线的斜率,再求直线的倾斜角.

解答 解:直线 $\sqrt{3}x+3y+2=0$的斜率k=-$\frac{\sqrt{3}}{3}$,
∴直线的倾斜角是为$\frac{5π}{6}$.
故选:B.

点评 本题考查直线的倾斜角的求法,是基础题,解题时要注意直线倾斜角与斜率k的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在平面直角坐标系xOy中,已知点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=8,则点P的轨迹是(  )
A.椭圆B.双曲线C.双曲线的左支D.双曲线的右支

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数和次品件数.则下列事件是互斥事件但不是对立事件的是(  )
A.恰好有1件次品和恰好有2件次品B.至少有1件次品和全是次品
C.至少有1件正品和至少有1件次品D.至少有1件次品和全是正品

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的首项${a_1}=\frac{5}{4}$,且an+1=$\left\{\begin{array}{l}{\frac{1}{2}{a}_{n},n为偶数}\\{{a}_{n}+\frac{1}{4},n为奇数}\end{array}\right.$,记${b_n}={a_{2n-1}}-\frac{1}{4}$,
(1)求b1,b2
(2)求证{bn}为等比数列;
(3)设数列cn=a2n-1•(bn-1),是否存在正整数k,使得对一切n∈N*,都有cn≥ck恒成立,若存在求出ck及k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=$\frac{1}{2}$AD=a,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到图2中△A1BE的位置,得到四棱锥A1-BCDE.
(Ⅰ)证明:CD⊥平面A1OC;
(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1-BCDE的体积为36$\sqrt{2}$,求点E到平面A1CD的距离h的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题:“若x2<1,则-1<x<1”的逆否命题是(  )
A.若x≥1或 x≤-1,则 x2≥1B.若-1<x<1,则 x2<1
C.若x>1或x<-1,则 x2>1D.若 x2≥1,则 x≥1或 x≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足递推式an=2an-1+1(n≥2),其中a4=15.
(1)求a1,a2,a3
(2)求证:数列{an+1}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点分别为A、B,点P在椭圆上且异于A、B两点,O为坐标原点.
(1)若直线AP与BP的斜率之积为$-\frac{1}{4}$,求椭圆的离心率;
(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\left\{\begin{array}{l}2-{(\frac{1}{2})^x},x≤0\\ \frac{1}{2}{x^2}-x+1,x>0\end{array}\right.$.
(1)写出该函数的单调递减区间;
(2)若函数g(x)=f(x)-m恰有1个零点,求实数m的取值范围;
(3)若不等式f(x)≤n2-2bn+1对所有x∈[-1,1],b∈[-1,1]恒成立,求实数n的取值范围.

查看答案和解析>>

同步练习册答案