精英家教网 > 高中数学 > 题目详情
18.若a、b、c∈R,且ab+bc+ca=1,则下列不等式成立的是(  )
A.a2+b2+c2≥2B.(a+b+c)2≥3C.$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$≥2$\sqrt{3}$D.a+b+c≤$\sqrt{3}$

分析 (a-b)2+(b-c)2+(a-c)2≥0,展开为a2+b2+c2≥ab+ac+bc,因此(a+b+c)2≥3(ab+bc+ac),即可判断出.

解答 解:∵(a-b)2+(b-c)2+(a-c)2≥0,当且仅当a=b=c时取等号.
∴a2+b2+c2≥ab+ac+bc,
∴(a+b+c)2=a2+b2+c2+2(ab+ac+bc)≥3(ab+bc+ac)=3,
因此B正确.
故选:B.

点评 本题查克拉基本不等式的性质,考查了变形能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知复数w满足w-4=(3-2w)i,z=5÷w+|w-2|.求w、z的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在区间[0,2]上随机取一个实数x,若事件“3x-m<0”发生的概率为$\frac{1}{6}$,则实数m=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,其中向量$\overrightarrow{a}$=(2cosx,$\sqrt{3}$cosx),$\overrightarrow{b}$=(cosx,2sinx).
(Ⅰ)求函数f(x)的最小正周期和在[0,π]上的单调递增区间;
(Ⅱ)△ABC中,角A,B,C的对边分别为a,b,c,且a2+b2-c2≥ab,求f(C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.证明:n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆锥的底面面积为9π,母线长为5,求圆锥的轴截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sin(3x+$\frac{π}{4}$),x∈R
(1)求f(-$\frac{7}{12}π$)的值及f(x)设为最小正周期T;
(2)若$α∈(0,\frac{π}{2})$,f($\frac{α}{3}$)=2cos($α+\frac{π}{4}$),求f($\frac{2}{3}α$-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线y=ax2(a>0)上两个动点A、B(不在原点),满足$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,若存在定点M,使得$\overrightarrow{OM}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=1,则M坐标为 (  )
A.({0,-a})B.({0,a})C.($\frac{1}{a}$,0})D.(0,$\frac{1}{a}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.抛物线y2=2px(p>0)的焦点为F,A、B为抛物线上的两个动点,且满足∠AFB=60°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则$\frac{|MN|}{|AB|}$的最大值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.1D.2

查看答案和解析>>

同步练习册答案