精英家教网 > 高中数学 > 题目详情
13.设△ABC中,角A,B,C的对边分别为a,b,c,给出如下四个命题:
(1)若a,b,c成等差数列,则B≤$\frac{π}{3}$;
(2)若B>$\frac{π}{2}$,则logsinBsinA<logsinBcosC
(3)若b2=ac,则a2+c2-b2≥ac
(4)若sinA-sinB≤0,则A≤B
其中真命题的序号是(1)(3)(4)(要求填上所有真命题的序号)

分析 (1)由a,b,c成等差数列,根据等差数列的性质得到2b=a+c,解出b,然后利用余弦定理表示出cosB,把b的式子代入后,合并化简,利用基本不等式即可求出cosB的最小值,根据B的范围以及余弦函数的单调性,再利用特殊角三角函数值即可求出B的取值范围,即可判断;
(2)利用三角形的内角的大小,以及三角函数值的大小,结合对数的图象和性质即可判断;
(3)利用a2+c2≥2ac及已知即可证明结论;
(4)由sinA-sinB≤0,利用正弦定理可得a≤b,结合大边对大角即可得解.

解答 解:(1)由a,b,c成等差数列,得到2b=a+c,即b=$\frac{a+c}{2}$,
则cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-(\frac{a+c}{2})^{2}}{2ac}$=$\frac{3({a}^{2}+{c}^{2})-2ac}{8ac}$≥$\frac{6ac-2ac}{8ac}$=$\frac{1}{2}$,
因为B∈(0,π),且余弦函数在(0,π)上为减函数,
所以角B的范围是:0<B≤$\frac{π}{3}$.故为真命题.
(2)若B>$\frac{π}{2}$,则0<sinB<1,A,C为锐角,无法比较sinA,cosC的大小,故结论不一定正确.故为假命题.
(3)因为:a2+c2≥2ac,即a2+c2-ac≥ac,
当b2=ac时,a2+c2-b2≥ac,显然成立,故为真命题.
(4)由sinA-sinB≤0,即:sinA≤sinB,
由正弦定理,sinA=$\frac{a}{2R}$,sinB=$\frac{b}{2R}$,
可得:$\frac{a}{2R}$≤$\frac{b}{2R}$,即a≤b,则A≤B,故为真命题.
故答案为:(1)(3)(4).

点评 此题考查学生掌握等差数列的性质,灵活运用余弦定理化简求值,会利用基本不等式求函数的最值,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知关于x的不等式(ax一1)(x十1)<0的解集为(-∞,-1)∪(-$\frac{1}{2}$,+∞),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E为C1D1的中点.
(1)求证:DE⊥平面BEC;
(2)求三棱锥C-BED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,
AD=4,∠PAD=60°.
(1)若M为PA的中点,求证:DM∥平面PBC;
(2)求三棱锥D-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,点$A(cosθ,\sqrt{2}sinθ),B(sinθ,0)$,其中θ∈R.
(1)当θ∈[0,$\frac{π}{2}$]时,求|$\overrightarrow{AB}$|的最大值.
(2)当$θ∈[{0,\frac{π}{2}}]$,|$\overrightarrow{AB}$|=$\sqrt{\frac{5}{2}}$时,求$sin(2θ+\frac{5π}{12})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线m,n和平面α,m?α,n∥m,那么“n?α”是“m∥α”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=6,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-3$\overrightarrow{b}$)=-72.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{3}{2}$,过其右焦点F(3,0),且垂直于x轴的直线与双曲线交于点A、B,则|AB|=(  )
A.4B.5C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.偶函数f(x)定义在(-1,0)∪(0,1)上,且$f(\frac{1}{2})=0$,当x>0时,总有$(\frac{1}{x}-x)f'(x)•ln(1-{x^2})>2f(x)$,则不等式f(x)<0的解集为(  )
A.{x|-1<x<1且x≠0}B.$\left\{x\right.|-1<x<-\frac{1}{2}$或$\frac{1}{2}<x<\left.1\right\}$
C.$\left\{{x|-\frac{1}{2}}\right.<x<\frac{1}{2}$且x≠0}D.{x|-1<x<-$\frac{1}{2}$或$0<x<\left.{\frac{1}{2}}\right\}$

查看答案和解析>>

同步练习册答案