精英家教网 > 高中数学 > 题目详情
19.已知等比数列{an}中,a2=-4,${a_5}=\frac{1}{2}$,则公比q=(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

分析 直接利用等比数列的通项公式化简求解即可.

解答 解:等比数列{an}中,a2=-4,${a_5}=\frac{1}{2}$,
可得a2q3=a5,即-4q3=$\frac{1}{2}$,解得q=-$\frac{1}{2}$.
故选B.

点评 本题考查等比数列的通项公式的应用,等比数列的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=x,过点P(1,0)作直线l交抛物线C于两点A(x1,y1),B(x2,y2),过A,B分别做抛物线C的切线,两条切线交于点Q.
(1)求x1x2,y1y2的值;
(2)证明性质:若点(x0,y0)(y0≠0)在抛物线C上,则在此处抛物线的切线斜率为$\frac{1}{2{y}_{0}}$.并求在三角形QAB面积为$\frac{5\sqrt{5}}{4}$时,直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.将四个编号为1,2,3,4的相同小球放入编号为1,2,3,4的四个盒子中,
(1)若每个盒子放一个小球,求有多少种放法;
(2)若每个盒子放一球,求恰有1个盒子的号码与小球的号码相同的放法种数;
(3)求恰有一个空盒子的放法种数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$f(x)=2sin(2x+\frac{π}{4})$定义在$[0,\frac{π}{2}]$上,则f(x)的值域是[-$\sqrt{2}$,2];f(x)的减区间是[$\frac{π}{8}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中内角A,B,C的对边分别为a,b,c,满足a=2,b=2$\sqrt{3}$,A=30°的△ABC的个数(  )
A.0B.1C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正方形ABCD的边长为2,E为CD中点,F为线段BE上的动点,则$\overrightarrow{FB}•\overrightarrow{FC}$的取值范围是$[{-\frac{4}{5},1}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=2sin2(x-$\frac{π}{4}$)-1是(  )
A.最小正周期为π的奇函数B.最小正周期为2π的奇函数
C.最小正周期为π的偶函数D.最小正周期为2π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.关于x的方程ax+b=$\frac{c}{{x}^{2}}$(a,b∈R+,c∈R)有且仅有两根x1、x2,若x1<0,则$\frac{{x}_{1}}{{x}_{2}}$=(  )
A.-3B.-2C.-$\sqrt{2c}$D.-$\sqrt{3}$c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知定义在R上的奇函数f(x),满足当x≥0时,f(x)=$\left\{\begin{array}{l}{2{x}^{2},0≤x≤1}\\{3x-{x}^{3},x>1}\end{array}\right.$,若函数g(x)=f(f(x))-c在闭区间[-2,2]上有9个不同的零点,则实数c的取值范围为(-2,2).

查看答案和解析>>

同步练习册答案