精英家教网 > 高中数学 > 题目详情
7.某几何体的三视图如图所示,若该几何体的体积为$\frac{20}{3}$,则图中x的值为(  )
A.3B.1C.2D.$\frac{5}{2}$

分析 如图所示,该几何体为三棱柱ABC-A1B1C1,去掉一个三棱锥A-CDC1后剩下的几何体.其中AB⊥BC,侧面ABB1A1是正方形,D为BC的中点,BC=4.

解答 解:如图所示,该几何体为三棱柱ABC-A1B1C1
去掉一个三棱锥A-CDC1后剩下的几何体
其中AB⊥BC,侧面ABB1A1是正方形,
D为BC的中点,BC=4.
∴该几何体的体积为$\frac{20}{3}$=$\frac{1}{2}•4x•x$-$\frac{1}{3}•\frac{1}{2}•2x$•x,
解得x=2.
故选:C.

点评 本题考查了三棱锥与三棱柱的三视图、体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若偶函数f(x)在(-∞,0]上单调递减,a=log2$\frac{1}{3}$,b=log4$\frac{1}{5}$,c=${2^{\frac{3}{2}}}$,则f(a),f(b),f(c)满足(  )
A.f(a)<f(b)<f(c)B.f(b)<f(a)<f(c)C.f(c)<f(a)<f(b)D.f(c)<f(b)<f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线l1:ax+y-a+1=0,直线l1:4x+ay-2=0,则“a=±2”是“l1∥l2”的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知{an}为等比数列,Sn为其前n项和,a2=2,S8=0,则S99=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f'(x),且有2f(x)+xf'(x)>x2,则不等式(x+2017)2f(x+2017)-f(-1)<0的解集为(-2018,-2017).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.现需建造一个容积为V的圆柱形铁桶,它的盖子用铝合金材料,已知单位面积的铝合金的价格是铁的3倍.要使该容器的造价最低,则铁桶的底面半径r与高h的比值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a>b>c且$\frac{2}{a-b}+\frac{1}{b-c}≥\frac{m}{a-c}$恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.数列{an}满足a1=1,且对于任意的n∈N*都有an+1=an+a1+n,则$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2017}}}}$等于(  )
A.$\frac{2016}{2017}$B.$\frac{4032}{2017}$C.$\frac{2017}{2018}$D.$\frac{4034}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.记不等式组$\left\{\begin{array}{l}4x+3y≥10\\ x≤3\\ y≤4\end{array}\right.$表示的平面区域为D,过区域D中任意一点P作圆x2+y2=1的两条切线,切点分别为A,B,则cos∠PAB的最大值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案