精英家教网 > 高中数学 > 题目详情
6.已知f(x)=3x+m•3-x为奇函数.
(1)求函数g(x)=f(x)-$\frac{8}{3}$的零点;
(2)若对任意t∈R的都有f(t2+a2-a)+f(1+2at)≥0恒成立,求实数a的取值范围.

分析 (1)根据函数的奇偶性得到f(0)=0,求出m的值,从而求出f(x)的解析式,令g(x)=0,求出函数的零点即可;
(2)根据函数的奇偶性和单调性,问题转化为t2+2at+a2-a+1≥0对任意t∈R恒成立,根据二次函数的性质求出a的范围即可.

解答 解:(1)∵f(x)是奇函数,∴f(0)=0,
解得:m=-1,
∴f(x)=3x-3-x,令g(x)=0,即3x-3-x-$\frac{8}{3}$=0,
令t=3x,则t-$\frac{1}{t}$-$\frac{8}{3}$=0,
即3t2-8t-3=0,解得:t=3或t=-$\frac{1}{3}$,
∵t=3x≥0,∴t=3即x=1,
∴函数g(x)的零点是1;
(2)∵对任意t∈R的都有f(t2+a2-a)+f(1+2at)≥0恒成立,
∴f(t2+a2-a)≥-f(1+2at)对任意t∈R恒成立,
∵f(x)在R是奇函数也是增函数,
∴f(t2+a2-a)≥-f(-1-2at)对任意t∈R恒成立,
即t2+a2-a≥-1-2at对任意t∈R恒成立,
即t2+2at+a2-a+1≥0对任意t∈R恒成立,
∴△=(2a)2-4(a2-a+1)≤0,
∴a≤1,实数a的范围是(-∞,1].

点评 本题考查了函数的奇偶性和单调性问题,考查函数的零点问题以及二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=4,an+1=qan+d(q,d为常数).
(1)当q=1,d=2时,求a2017的值;
(2)当q=3,d=-2时,记${b_n}=\frac{1}{{{a_n}-1}}$,Sn=b1+b2+b3+…+bn,证明:${S_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线的左、右焦点分别是F1,F2,过F2的直线交双曲线的右支于P,Q两点,若|PF2|=|F1F2|,且|QF2|=2|PF2|,则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{7}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\frac{\sqrt{5-ax}}{a-2}$(a∈A),若f(x)在区间(0,1]上是减函数,则集合A可以是(  )
A.(-∞,0)B.[1,2)C.(-1,5]D.[4,6]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=$\frac{{2}^{x+1}}{{2}^{x}+1}$,则f(-$\frac{1}{3}$)+f(-$\frac{1}{2}$)+f(-1)+f(0)+f(1)+f($\frac{1}{2}$)+f($\frac{1}{3}$)=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知θ∈(0,π),tanθ=-$\frac{3}{2}$,则cosθ=(  )
A.$\frac{3}{{\sqrt{13}}}$B.$-\frac{2}{{\sqrt{13}}}$C.$\frac{2}{{\sqrt{13}}}$D.$-\frac{3}{{\sqrt{13}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.四棱锥P-ABCD中,底面ABCD为直角梯形,AB⊥AD,BC∥AD,且AB=BC=2,AD=3,PA⊥平面ABCD且PA=2,则PB与平面PCD所成角的正弦值为(  )
A.$\frac{\sqrt{42}}{7}$B.$\frac{\sqrt{7}}{7}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.当x>0时,f(x)=$\frac{12}{x}$+4x的最小值为(  )
A.8$\sqrt{3}$B.8C.16D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图(1);对变量u,v,有观测数据(ui,vi)(i=1,2,…,10),得散点图(2),由这两个散点图可以判断(  )
A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关
C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关

查看答案和解析>>

同步练习册答案