精英家教网 > 高中数学 > 题目详情
20.在等比数列{an}中,若a1=8,q=$\frac{1}{2}$,an=$\frac{1}{2}$,则Sn等于(  )
A.31B.$\frac{31}{2}$C.8D.15

分析 由题意和等比数列的通项公式可得n值,代入求和公式计算可得.

解答 解:∵在等比数列{an}中a1=8,q=$\frac{1}{2}$,an=$\frac{1}{2}$,
∴$\frac{1}{2}$=8×($\frac{1}{2}$)n-1,解得n=5,
∴Sn=S5=$\frac{8(1-\frac{1}{{2}^{5}})}{1-\frac{1}{2}}$=$\frac{31}{2}$,
故选:B.

点评 本题考查等比数列的通项公式和求和公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=1-2a-2acosx-2sin2x(a∈R,x∈R)的最小值为g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.与α终边关于原点对称的角的集合{β|β=k•360°+180°+α,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\frac{(2-m)x}{{x}^{2}+m}$的图象如图所示,则m的范围为(  )
A.(-∞,-1)B.(-1,2)C.(0,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知cosθ=-$\frac{3}{5}$,且180°<θ<270°,求tan$\frac{θ}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(cosx)=cos17x,则f(sin$\frac{π}{6}$)值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{lnx}{x}$,g(x)=ax-a.
(1)若函数g(x)的图象与函数f(x)的图象相切,求a的值及切点的坐标;
(2)若m,n∈(0,1],且m>n,求证:$\root{mn}{\frac{{m}^{n}}{{n}^{m}}}$>em-n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.有一动点P从原点出发,在时间t时的速度为v(t)=8t-2t2,解下列各小题:
(1)当t=3时,求点P离开原点的路程;
(2)求当t=5时,点P的位置;
(3)求t=0到t=5时,点P经过的路程;
(4)求点P经过时间t后又返回原点时的t值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM,E为BD的中点.

(1)求证:BM⊥平面ADM;
(2)求直线AE与平面ADM所成角的正弦值.

查看答案和解析>>

同步练习册答案