精英家教网 > 高中数学 > 题目详情
1.已知某圆的极坐标方程为ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+6=0,求:
(1)圆的标准方程和参数方程;
(2)在圆上所有的点(x,y)中x•y的最大值和最小值.

分析 (1)ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+6=0,即ρ2-4$\sqrt{2}$×$\frac{\sqrt{2}}{2}$ρ(cosθ+sinθ)+6=0,利用互化公式可得直角坐标方程,再利用平方关系即可得出参数方程.
(2)设圆上的点$(2+\sqrt{2}cosθ,2+\sqrt{2}sinθ)$,则xy=4+2$\sqrt{2}$sinθ+2$\sqrt{2}$cosθ+2sinθcosθ,令sinθ+cosθ=$\sqrt{2}$sin$(θ+\frac{π}{4})$=t∈$[-\sqrt{2},\sqrt{2}]$,可得xy=4+2$\sqrt{2}$t+t2-1,即可得出.

解答 解:(1)ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+6=0,即ρ2-4$\sqrt{2}$×$\frac{\sqrt{2}}{2}$ρ(cosθ+sinθ)+6=0,
可得x2+y2-4x-4y+6=0,配方为:(x-2)2+(y-2)2=2.
可得参数方程:$\left\{\begin{array}{l}{x=2+\sqrt{2}cosθ}\\{y=2+\sqrt{2}sinθ}\end{array}\right.$(θ为参数).
(2)设圆上的点$(2+\sqrt{2}cosθ,2+\sqrt{2}sinθ)$,
则xy=4+2$\sqrt{2}$sinθ+2$\sqrt{2}$cosθ+2sinθcosθ,
令sinθ+cosθ=$\sqrt{2}$sin$(θ+\frac{π}{4})$=t∈$[-\sqrt{2},\sqrt{2}]$,
则t2=1+2sinθcosθ,可得sinθcosθ=$\frac{{t}^{2}-1}{2}$.
则xy=4+2$\sqrt{2}$t+t2-1=$(t+\sqrt{2})^{2}$+1∈[1,9].
∴xy的最大值最小值分别为1,9.

点评 本题考查了极坐标方程化为直角坐标方程、圆的参数方程及其应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}x+\frac{2}{e},x<0\\ \frac{x}{e^x},x≥0\end{array}$,若f(x1)=f(x2)=f(x3)(x1<x2<x3),则$\frac{{f({x_2})}}{x_1}$的取值范围是(  )
A.(-1,0)B.(-2,-1)C.(-∞,0)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z的共轭复数为$\overline z=1+3i$(i为虚数单位),则复数$\frac{z}{1+i}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合$A=\left\{{({x,y})|{{({x-3})}^2}+{{({y-4})}^2}=\frac{4}{5}}\right\},B=\left\{{({x,y})|{{({x-3})}^2}+{{({y-4})}^2}=\frac{36}{5}}\right\}$,C={(x,y)|2|x-3|+|y-4|=λ},若(A∪B)∩C≠ϕ,则实数λ的取值范围是(  )
A.$[{\frac{{2\sqrt{5}}}{5},2}]∪[{\frac{{6\sqrt{5}}}{5},6}]$B.$[{\frac{{2\sqrt{5}}}{5},6}]$C.$[{\frac{{2\sqrt{5}}}{5},2}]∪[{4,6}]$D.$\left\{2\right\}∪[{\frac{{6\sqrt{5}}}{5},6}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.复数$z=\frac{3-i}{i+2}$在复平面内对应的点位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和Sn=$\frac{3}{2}$(an-1),数列{bn}满足bn+2=2bn+1-bn,且b6=a3,b60=a5,其中n∈N*.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=(-1)nbnbn+1,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设(1-x)(2x+1)5=a0+a1x+a2x2+…+a5x6,则a2等于30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=sinα}\end{array}\right.$,(α为参数),以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,直线l的极坐标方程为$ρcosθ-\sqrt{2}ρsinθ+3=0$.
(1)求曲线C的极坐标方程;
(2)设P为曲线C上一点,Q为直线l上一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“mMODn”表示m除以n的余数),若输入的m,n分别为325,125,则输出的m=(  )
A.0B.5C.25D.45

查看答案和解析>>

同步练习册答案