精英家教网 > 高中数学 > 题目详情
8.在多面体ABCDEFG中,四边形ABCD与CDEF均为正方形,CF⊥平面ABCD,BG⊥平面ABCD,且AB=2BG=4BH.
(Ⅰ)求证:GH⊥平面EFG;
(Ⅱ)求二面角D-FG-E的余弦值.

分析 (Ⅰ)连接FH,推导出CD⊥平面BCFG,从而CD⊥GH,进而EF⊥GH.由勾股定理得GH⊥FG,由此能证明GH⊥平面EFG.
(Ⅱ)以DA,DC,DE分别为x,y,z轴建立空间直角坐标系,利用向量法能求出二面角D-FG-E的余弦值.

解答 证明:(Ⅰ)连接FH,由题意知CD⊥BC,CD⊥CF,∴CD⊥平面BCFG.
又∵GH?平面BCFG,∴CD⊥GH.
又∵EF∥CD,∴EF⊥GH.
设AB=a,则$BH=\frac{1}{4}a,BG=\frac{1}{2}a$,
∴$G{H^2}=B{G^2}+B{H^2}=\frac{5}{16}{a^2}$,$F{G^2}={(CF-BG)^2}+B{C^2}=\frac{5}{4}{a^2},F{H^2}=C{F^2}+C{H^2}=\frac{25}{16}{a^2}$,
则FH2=FG2+GH2,∴GH⊥FG.
又∵EF∩FG=F,∴GH⊥平面EFG.
解:(Ⅱ)∵CF⊥平面ABCD,AD⊥DC,
∴以DA,DC,DE分别为x,y,z轴建立空间直角坐标系,
设AB=4,则D(0,0,0),E(0,0,4),F(0,4,4),G(4,4,2),H(3,4,0),
∴$\overrightarrow{DF}=(0,4,4),\overrightarrow{EF}=(0,4,0),\overrightarrow{FG}=(4,0,-2)$.
设$\overrightarrow{n_1}=({x_1},{y_1},{z_1})$为平面DFG的法向量,x1=1
则由$\left\{{\begin{array}{l}{\overrightarrow{n_1}•\overrightarrow{DF}=0}\\{\overrightarrow{n_1}•\overrightarrow{FG}=0}\end{array}}\right.$得$\left\{{\begin{array}{l}{4{y_1}+4{z_1}=0}\\{4{x_1}-2{z_1}=0}\end{array}}\right.$取,则$\overrightarrow{n_1}=(1,-2,2)$.
设$\overrightarrow{n_2}=({x_2},{y_2},{z_2})$为平面EFG的法向量,
由(Ⅰ)知GH⊥平面EFG,则可取$\overrightarrow{n_2}=\overrightarrow{HG}=(1,0,2)$.
∴$cos<\overrightarrow{n_1},\overrightarrow{n_2}>=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|{\overrightarrow{n_1}}||{\overrightarrow{n_2}}|}}=\frac{5}{{3×\sqrt{5}}}=\frac{{\sqrt{5}}}{3}$,
∴二面角D-FG-E的余弦值为$\frac{{\sqrt{5}}}{3}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在△ABC中,a=42,A=45°,B=60°,解三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若关于x的不等式3a-ax-x2>0有实数解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.把半径为2的圆分成相等的四弧,再将四弧围成星形放在半径为2的圆内,现在往该圆内任投一点,此点落在星形内的概率为$\frac{4}{π}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2+2x-ln(x+1)(a为常数)
(1)当a=-1时,求函数f(x)的单调区间;
(2)求x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=3-2|x|,g(x)=x2-2x,构造函数F(x)=$\left\{\begin{array}{l}{g(x),当f(x)≥g(x)时}\\{f(x),当f(x)<g(x)时}\end{array}\right.$,那么F(x)(  )
A.有最大值3,最小值-1B.有最大值 $2-\sqrt{7}$,无最小值
C.有最大值 $7-2\sqrt{7}$,无最小值D.无最大值,也无最小值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x∈R,n∈N,定义Mxn=x(x+1)(x+2)…(x+n-1),例如,M-43=(-4)(-3)(-2)=-24,则函数f(x)=Mx-511•sinx的奇偶性是(  )
A.是偶函数不是奇函数B.是奇函数不是偶函数
C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.圆心为C(2,-3),且经过坐标原点的圆的方程为(x-2)2+(y+3)2=13.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,若A=$\frac{π}{3}$,b(1-cosC)=ccosA,b=2,则△ABC的面积为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$或2$\sqrt{3}$

查看答案和解析>>

同步练习册答案