精英家教网 > 高中数学 > 题目详情
3.命题“?x∈(-1,1),2x+a=0”是真命题,则a的取值范围是(-2,2).

分析 根据特称命题的性质,进行求解即可.

解答 解:由2x+a=0得a=-2x,
∵x∈(-1,1),
∴-2x∈(-2,2),
则a∈(-2,2),
故答案为:(-2,2)

点评 本题主要考查特称命题的应用,转化为a=-2x,求出-2x的取值范围是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知|$\overrightarrow a$|=2,|$\overrightarrow b$|=4,$\overrightarrow a$⊥($\overrightarrow b$-$\overrightarrow a$),则向量$\overrightarrow a$与$\overrightarrow b$的夹角是$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)=$\sqrt{4-{x}^{2}}$,g(x)=|x-2|,则下列结论正确的是(  )
A.h(x)=f(x)+g(x)是偶函数B.h(x)=f(x)•g(x)是奇函数
C.h(x)=$\frac{g(x)•f(x)}{2-x}$是偶函数D.h(x)=$\frac{f(x)}{2-g(x)}$是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}的前n项和为Sn,a1a2a3=8,a1+a2+a3=7且a1<a2,若$\frac{{S}_{n}}{{a}_{n}}$∈[a,b]对任意的整数n都成立,则b-a的最小值为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“a=2“是“点P(2,0)不在圆x2-2ax+a2+y2-4y=0外”的什么条件(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若关于a,b的代数式f(a,b)满足:
(1)f(a,a)=a;
(2)f(ka,kb)=k•f(a,b);
(3)f(a1+a2,b1+b2)=f(a1,b1)+f(a2,b2);
(4)$f(a,b)=f(b,\frac{a+b}{2})$,
则f(1,0)+f(2,0)=0;f(x,y)=y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若定义在区间[-2016,2016]上的函数f(x)满足:对于任意的x1,x2∈[-2016,2016],都有f(x1+x2)=f(x1)+f(x2)-2016,且x>0时,有f(x)<2016,f(x)的最大值、最小值分别为M,N,则M+N的值为(  )
A.2015B.2016C.4030D.4032

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a1,a2,…,a2016∈[-2,2],且a1+a2+…+a2016=0,则f=a${\;}_{1}^{3}$+a${\;}_{2}^{3}$+…+a${\;}_{2016}^{3}$的最大值是(  )
A.2016B.3024C.4032D.5040

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知成等比数列的三个数的乘积为64,且这三个数分别减去1、2、5后又成等差数列,求这三个数.

查看答案和解析>>

同步练习册答案