精英家教网 > 高中数学 > 题目详情
10.已知点P(1,2),Q(2cosα,2sinα),则|$\overrightarrow{PQ}$|的取值范围是[$\sqrt{5}-2$,$2+\sqrt{5}$].

分析 直接利用向量的模以及三角函数的辅助角公式化简求解即可.

解答 解:点P(1,2),Q(2cosα,2sinα),
则|$\overrightarrow{PQ}$|$\sqrt{{(2cosα-1)}^{2}+{(2sinα-2)}^{2}}$=$\sqrt{9-4cosα-8sinα}$=$\sqrt{9-4\sqrt{5}sin(α+θ)}$,其中tanθ=$\frac{1}{2}$.
$\sqrt{9-4\sqrt{5}sin(α+θ)}∈$[$\sqrt{5}-2$,$2+\sqrt{5}$].
故答案为:[$\sqrt{5}-2$,$2+\sqrt{5}$].

点评 本题考查三角函数的最值的求法,向量的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知{an}的前n项和Sn,an>0且an2+2an=4Sn+3
(1)求{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某同学做了一个如图所示的等腰直角三角形形状的数表,且把奇数和偶数分别依次排在了数表的奇数行和偶数行,若用a(i,j)表示第i行从左数第j个数,如a(4,3)=10,则a(21,6)=(  )
A.219B.211C.209D.213

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知在△ABC中,角A、B、C的对边分别为a、b、c,且$\frac{2}{sinB}$=$\frac{1}{sinA}$+$\frac{1}{sinC}$.
(1)求角B的范围;
(2)求f(B)=2$\sqrt{3}$cos2$\frac{B}{2}$+2sin$\frac{B}{2}$cos$\frac{B}{2}$-3的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\frac{3+x+{x}^{2}}{1+x}$(x>0)的最小值是2$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.不等式$\frac{1-|x|}{1-|2x|}$>$\frac{1}{2}$的解集为(-$\frac{1}{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用反证法证明:$\sqrt{2},\sqrt{3},\sqrt{5}$不可能成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在斜三棱柱ABC-A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的角,AA1=2,底面ABC是边长为2的正三角形,其重心为G点,E是线段BC1上一点,且$BE=\frac{1}{3}B{C_1}$.
(1)求证:GE∥侧面AA1B1B;
(2)求三棱锥E-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.过圆外一点P作圆的切线PA(A为切点),再作割线PBC与圆交于B,C.若PA=6,AC=8,BC=9,则AB=4.

查看答案和解析>>

同步练习册答案