| A. | $\frac{10}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{9}{4}$ |
分析 由约束条件作出可行域,化$\frac{2x-y+4}{x+2}$为$\frac{2(x+2)-y}{x+2}=2-\frac{y}{x+2}$,再由$\frac{y}{x+2}$的几何意义,即可行域内的动点(x,y)与定点P(-2,0)连线的斜率求得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{2x-y-6≥0}\\{x+y+3≥0}\\{5x+2y-6≤0}\end{array}\right.$作出可行域如图,![]()
$\frac{2x-y+4}{x+2}$=$\frac{2(x+2)-y}{x+2}=2-\frac{y}{x+2}$,
$\frac{y}{x+2}$的几何意义为可行域内的动点(x,y)与定点P(-2,0)连线的斜率.
联立$\left\{\begin{array}{l}{2x-y-6=0}\\{x+y+3=0}\end{array}\right.$,解得A(1,-4),
∵${k}_{PA}=\frac{-4}{1-(-2)}=-\frac{4}{3}$,
∴$\frac{2x-y+4}{x+2}$的最大值 为2-(-$\frac{4}{3}$)=$\frac{10}{3}$.
故选:A.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10cm | B. | 20cm | C. | 30cm | D. | 40cm |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 组别 | PM2.5(微克/立方米) | 频数(天) | 频率 |
| 第一组 | (0,15] | 4 | 0.1 |
| 第二组 | (15,30] | 12 | 0.3 |
| 第三组 | (30,45] | 8 | 0.2 |
| 第四组 | (45,60] | 8 | 0.2 |
| 第五组 | (60,75] | 4 | 0.1 |
| 第六组 | (75,90 ) | 4 | 0.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com